923 resultados para image processing, structural biology, acetylcholine, achbp, hemocyanin
Resumo:
Current state of the art techniques for landmine detection in ground penetrating radar (GPR) utilize statistical methods to identify characteristics of a landmine response. This research makes use of 2-D slices of data in which subsurface landmine responses have hyperbolic shapes. Various methods from the field of visual image processing are adapted to the 2-D GPR data, producing superior landmine detection results. This research goes on to develop a physics-based GPR augmentation method motivated by current advances in visual object detection. This GPR specific augmentation is used to mitigate issues caused by insufficient training sets. This work shows that augmentation improves detection performance under training conditions that are normally very difficult. Finally, this work introduces the use of convolutional neural networks as a method to learn feature extraction parameters. These learned convolutional features outperform hand-designed features in GPR detection tasks. This work presents a number of methods, both borrowed from and motivated by the substantial work in visual image processing. The methods developed and presented in this work show an improvement in overall detection performance and introduce a method to improve the robustness of statistical classification.
Resumo:
With security and surveillance, there is an increasing need to process image data efficiently and effectively either at source or in a large data network. Whilst a Field-Programmable Gate Array (FPGA) has been seen as a key technology for enabling this, the design process has been viewed as problematic in terms of the time and effort needed for implementation and verification. The work here proposes a different approach of using optimized FPGA-based soft-core processors which allows the user to exploit the task and data level parallelism to achieve the quality of dedicated FPGA implementations whilst reducing design time. The paper also reports some preliminary
progress on the design flow to program the structure. An implementation for a Histogram of Gradients algorithm is also reported which shows that a performance of 328 fps can be achieved with this design approach, whilst avoiding the long design time, verification and debugging steps associated with conventional FPGA implementations.
Resumo:
Coupled map lattices (CML) can describe many relaxation and optimization algorithms currently used in image processing. We recently introduced the ‘‘plastic‐CML’’ as a paradigm to extract (segment) objects in an image. Here, the image is applied by a set of forces to a metal sheet which is allowed to undergo plastic deformation parallel to the applied forces. In this paper we present an analysis of our ‘‘plastic‐CML’’ in one and two dimensions, deriving the nature and stability of its stationary solutions. We also detail how to use the CML in image processing, how to set the system parameters and present examples of it at work. We conclude that the plastic‐CML is able to segment images with large amounts of noise and large dynamic range of pixel values, and is suitable for a very large scale integration(VLSI) implementation.
Resumo:
Radio Simultaneous Location and Mapping (SLAM) consists of the simultaneous tracking of the target and estimation of the surrounding environment, to build a map and estimate the target movements within it. It is an increasingly exploited technique for automotive applications, in order to improve the localization of obstacles and the target relative movement with respect to them, for emergency situations, for example when it is necessary to explore (with a drone or a robot) environments with a limited visibility, or for personal radar applications, thanks to its versatility and cheapness. Until today, these systems were based on light detection and ranging (lidar) or visual cameras, high-accuracy and expensive approaches that are limited to specific environments and weather conditions. Instead, in case of smoke, fog or simply darkness, radar-based systems can operate exactly in the same way. In this thesis activity, the Fourier-Mellin algorithm is analyzed and implemented, to verify the applicability to Radio SLAM, in which the radar frames can be treated as images and the radar motion between consecutive frames can be covered with registration. Furthermore, a simplified version of that algorithm is proposed, in order to solve the problems of the Fourier-Mellin algorithm when working with real radar images and improve the performance. The INRAS RBK2, a MIMO 2x16 mmWave radar, is used for experimental acquisitions, consisting of multiple tests performed in Lab-E of the Cesena Campus, University of Bologna. The different performances of Fourier-Mellin and its simplified version are compared also with the MatchScan algorithm, a classic algorithm for SLAM systems.
Resumo:
OBJECTIVE: To evaluate tools for the fusion of images generated by tomography and structural and functional magnetic resonance imaging. METHODS: Magnetic resonance and functional magnetic resonance imaging were performed while a volunteer who had previously undergone cranial tomography performed motor and somatosensory tasks in a 3-Tesla scanner. Image data were analyzed with different programs, and the results were compared. RESULTS: We constructed a flow chart of computational processes that allowed measurement of the spatial congruence between the methods. There was no single computational tool that contained the entire set of functions necessary to achieve the goal. CONCLUSION: The fusion of the images from the three methods proved to be feasible with the use of four free-access software programs (OsiriX, Register, MRIcro and FSL). Our results may serve as a basis for building software that will be useful as a virtual tool prior to neurosurgery.
Resumo:
Morphometric investigations using a point and intersection counting strategy in the lung often are not able to reveal the full set of morphologic changes. This happens particularly when structural modifications are not expressed in terms of volume density changes and when rough and fine surface density alterations cancel each other at different magnifications. Making use of digital image processing, we present a methodological approach that allows to easily and quickly quantify changes of the geometrical properties of the parenchymal lung structure and reflects closely the visual appreciation of the changes. Randomly sampled digital images from light microscopic sections of lung parenchyma are filtered, binarized, and skeletonized. The lung septa are thus represented as a single-pixel wide line network with nodal points and end points and the corresponding internodal and end segments. By automatically counting the number of points and measuring the lengths of the skeletal segments, the lung architecture can be characterized and very subtle structural changes can be detected. This new methodological approach to lung structure analysis is highly sensitive to morphological changes in the parenchyma: it detected highly significant quantitative alterations in the structure of lungs of rats treated with a glucocorticoid hormone, where the classical morphometry had partly failed.
Resumo:
Maltose-binding protein is the periplasmic component of the ABC transporter responsible for the uptake of maltose/maltodextrins. The Xanthomonas axonopodis pv. citri maltose-binding protein MalE has been crystallized at 293 Kusing the hanging-drop vapour-diffusion method. The crystal belonged to the primitive hexagonal space group P6(1)22, with unit-cell parameters a = 123.59, b = 123.59, c = 304.20 angstrom, and contained two molecules in the asymetric unit. It diffracted to 2.24 angstrom resolution.
Resumo:
Functional brain imaging techniques such as functional MRI (fMRI) that allow the in vivo investigation of the human brain have been exponentially employed to address the neurophysiological substrates of emotional processing. Despite the growing number of fMRI studies in the field, when taken separately these individual imaging studies demonstrate contrasting findings and variable pictures, and are unable to definitively characterize the neural networks underlying each specific emotional condition. Different imaging packages, as well as the statistical approaches for image processing and analysis, probably have a detrimental role by increasing the heterogeneity of findings. In particular, it is unclear to what extent the observed neurofunctional response of the brain cortex during emotional processing depends on the fMRI package used in the analysis. In this pilot study, we performed a double analysis of an fMRI dataset using emotional faces. The Statistical Parametric Mapping (SPM) version 2.6 (Wellcome Department of Cognitive Neurology, London, UK) and the XBAM 3.4 (Brain Imaging Analysis Unit, Institute of Psychiatry, Kings College London, UK) programs, which use parametric and non-parametric analysis, respectively, were used to assess our results. Both packages revealed that processing of emotional faces was associated with an increased activation in the brain`s visual areas (occipital, fusiform and lingual gyri), in the cerebellum, in the parietal cortex, in the cingulate cortex (anterior and posterior cingulate), and in the dorsolateral and ventrolateral prefrontal cortex. However, blood oxygenation level-dependent (BOLD) response in the temporal regions, insula and putamen was evident in the XBAM analysis but not in the SPM analysis. Overall, SPM and XBAM analyses revealed comparable whole-group brain responses. Further Studies are needed to explore the between-group compatibility of the different imaging packages in other cognitive and emotional processing domains. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A detailed analysis procedure is described for evaluating rates of volumetric change in brain structures based on structural magnetic resonance (MR) images. In this procedure, a series of image processing tools have been employed to address the problems encountered in measuring rates of change based on structural MR images. These tools include an algorithm for intensity non-uniforniity correction, a robust algorithm for three-dimensional image registration with sub-voxel precision and an algorithm for brain tissue segmentation. However, a unique feature in the procedure is the use of a fractional volume model that has been developed to provide a quantitative measure for the partial volume effect. With this model, the fractional constituent tissue volumes are evaluated for voxels at the tissue boundary that manifest partial volume effect, thus allowing tissue boundaries be defined at a sub-voxel level and in an automated fashion. Validation studies are presented on key algorithms including segmentation and registration. An overall assessment of the method is provided through the evaluation of the rates of brain atrophy in a group of normal elderly subjects for which the rate of brain atrophy due to normal aging is predictably small. An application of the method is given in Part 11 where the rates of brain atrophy in various brain regions are studied in relation to normal aging and Alzheimer's disease. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
The shape of the energy spectrum produced by an x-ray tube has a great importance in mammography. Many anode-filtration combinations have been proposed to obtain the most effective spectrum shape for the image quality-dose relationship. On the other hand, third generation synchrotrons such as the European Synchrotron Radiation Facility in Grenoble are able to produce a high flux of monoenergetic radiation. It is thus a powerful tool to study the effect of beam energy on image quality and dose in mammography. An objective method was used to evaluate image quality and dose in mammography with synchrotron radiation and to compare them to standard conventional units. It was performed systematically in the energy range of interest for mammography through the evaluation of a global image quality index and through the measurement of the mean glandular dose. Compared to conventional mammography units, synchrotron radiation shows a great improvement of the image quality-dose relationship, which is due to the beam monochromaticity and to the high intrinsic collimation of the beam, which allows the use of a slit instead of an anti-scatter grid for scatter rejection.
Resumo:
Three-dimensional information is much easier to understand than a set of two-dimensional images. Therefore a layman is thrilled by the pseudo-3D image taken in a scanning electron microscope (SEM) while, when seeing a transmission electron micrograph, his imagination is challenged. First approaches to gain insight in the third dimension were to make serial microtome sections of a region of interest (ROI) and then building a model of the object. Serial microtome sectioning is a tedious and skill-demanding work and therefore seldom done. In the last two decades with the increase of computer power, sophisticated display options, and the development of new instruments, an SEM with a built-in microtome as well as a focused ion beam scanning electron microscope (FIB-SEM), serial sectioning, and 3D analysis has become far easier and faster.Due to the relief like topology of the microtome trimmed block face of resin-embedded tissue, the ROI can be searched in the secondary electron mode, and at the selected spot, the ROI is prepared with the ion beam for 3D analysis. For FIB-SEM tomography, a thin slice is removed with the ion beam and the newly exposed face is imaged with the electron beam, usually by recording the backscattered electrons. The process, also called "slice and view," is repeated until the desired volume is imaged.As FIB-SEM allows 3D imaging of biological fine structure at high resolution of only small volumes, it is crucial to perform slice and view at carefully selected spots. Finding the region of interest is therefore a prerequisite for meaningful imaging. Thin layer plastification of biofilms offers direct access to the original sample surface and allows the selection of an ROI for site-specific FIB-SEM tomography just by its pronounced topographic features.
Resumo:
BACKGROUND AND OBJECTIVES: The thalamus exerts a pivotal role in pain processing and cortical excitability control, and migraine is characterized by repeated pain attacks and abnormal cortical habituation to excitatory stimuli. This work aimed at studying the microstructure of the thalamus in migraine patients using an innovative multiparametric approach at high-field magnetic resonance imaging (MRI). DESIGN: We examined 37 migraineurs (22 without aura, MWoA, and 15 with aura, MWA) as well as 20 healthy controls (HC) in a 3-T MRI equipped with a 32-channel coil. We acquired whole-brain T1 relaxation maps and computed magnetization transfer ratio (MTR), generalized fractional anisotropy, and T2* maps to probe microstructural and connectivity integrity and to assess iron deposition. We also correlated the obtained parametric values with the average monthly frequency of migraine attacks and disease duration. RESULTS: T1 relaxation time was significantly shorter in the thalamus of MWA patients compared with MWoA (P < 0.001) and HC (P ≤ 0.01); in addition, MTR was higher and T2* relaxation time was shorter in MWA than in MWoA patients (P < 0.05, respectively). These data reveal broad microstructural alterations in the thalamus of MWA patients compared with MWoA and HC, suggesting increased iron deposition and myelin content/cellularity. However, MWA and MWoA patients did not show any differences in the thalamic nucleus involved in pain processing in migraine. CONCLUSIONS: There are broad microstructural alterations in the thalamus of MWA patients that may underlie abnormal cortical excitability control leading to cortical spreading depression and visual aura.