986 resultados para hydrophobic interactions


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrostatic and hydrophobic interactions govern most of the properties of supramolecular systems, which is the reason determining the degree of ionization of macromolecules has become crucial for many applications. In this paper, we show that highresolution ultraviolet spectroscopy (VUV) can be used to determine the degree of ionization and its effect on the electronic excitation energies of layer-by-layer (LbL) films of poly(allylamine hydrochloride) (PAH) and poly[1-[4-(3-carboxy-4 hydroxyphenylazo)- benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO). A full assignment of the VUV peaks of these polyelectrolytes in solution and in cast or LbL films could be made, with their pH dependence allowing us to determine the p'K IND. a' using the Henderson-Hasselbach equation. The p'K IND. a' for PAZO increased from ca. 6 in solution to ca. 7.3 in LbL films owing to the charge transfer from PAH. Significantly, even using solutions at a fixed pH for PAH, the amount adsorbed on the LbL films still varied with the pH of the PAZO solutions due to these molecular-level interactions. Therefore, the procedure based on a comparison of VUV spectra from solutions and films obtained under distinct conditions is useful to determine the degree of dissociation of macromolecules, in addition to permitting interrogation of interface effects in multilayer films.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis, atomistic simulations are performed to investigate hydrophobic solvation and hydrophobic interactions in cosolvent/water binary mixtures. Many cosolvent/water binary mixtures exhibit non-ideal behavior caused by aggregation at the molecular scale level although they are stable and homogenous at the macroscopic scale. Force-field based atomistic simulations provide routes to relate atomistic-scale structure and interactions to thermodynamic solution properties. The predicted solution properties are however sensitive to the parameters used to describe the molecular interactions. In this thesis, a force field for tertiary butanol (TBA) and water mixtures is parameterized by making use of the Kirkwood-Buff theory of solution. The new force field is capable of describing the alcohol-alcohol, water-water and alcohol-water clustering in the solution as well as the solution components’ chemical potential derivatives in agreement with experimental data. With the new force field, the preferential solvation and the solvation thermodynamics of a hydrophobic solute in TBA/water mixtures have been studied. First, methane solvation at various TBA/water concentrations is discussed in terms of solvation free energy-, enthalpy- and entropy- changes, which have been compared to experimental data. We observed that the methane solvation free energy varies smoothly with the alcohol/water composition while the solvation enthalpies and entropies vary nonmonotonically. The latter occurs due to structural solvent reorganization contributions which are not present in the free energy change due to exact enthalpy-entropy compensation. It is therefore concluded that the enthalpy and entropy of solvation provide more detailed information on the reorganization of solvent molecules around the inserted solute. Hydrophobic interactions in binary urea/water mixtures are next discussed. This system is particularly relevant in biology (protein folding/unfolding), however, changes in the hydrophobic interaction induced by urea molecules are not well understood. In this thesis, this interaction has been studied by calculating the free energy (potential of mean force), enthalpy and entropy changes as a function of the solute-solute distance in water and in aqueous urea (6.9 M) solution. In chapter 5, the potential of mean force in both solution systems is analyzed in terms of its enthalpic and entropic contributions. In particular, contributions of solvent reorganization in the enthalpy and entropy changes are studied separately to better understand what are the changes in interactions in the system that contribute to the free energy of association of the nonpolar solutes. We observe that in aqueous urea the association between nonpolar solutes remains thermodynamically favorable (i.e., as it is the case in pure water). This observation contrasts a long-standing belief that clusters of nonpolar molecules dissolve completely in the presence of urea molecules. The consequences of our observations for the stability of proteins in concentrated urea solutions are discussed in the chapter 6 of the thesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The last decades have witnessed significant and rapid progress in polymer chemistry and molecular biology. The invention of PCR and advances in automated solid phase synthesis of DNA have made this biological entity broadly available to all researchers across biological and chemical sciences. Thanks to the development of a variety of polymerization techniques, macromolecules can be synthesized with predetermined molecular weights and excellent structural control. In recent years these two exciting areas of research converged to generate a new type of nucleic acid hybrid material, consisting of oligodeoxynucleotides and organic polymers. By conjugating these two classes of materials, DNA block copolymers are generated exhibiting engineered material properties that cannot be realized with polymers or nucleic acids alone. Different synthetic strategies based on grafting onto routes in solution or on solid support were developed which afforded DNA block copolymers with hydrophilic, hydrophobic and thermoresponsive organic polymers in good yields. Beside the preparation of DNA block copolymers with a relative short DNA-segment, it was also demonstrated how these bioorganic polymers can be synthesized exhibiting large DNA blocks (>1000 bases) applying the polymerase chain reaction. Amphiphilic DNA block copolymers, which were synthesized fully automated in a DNA synthesizer, self-assemble into well-defined nanoparticles. Hybridization of spherical micelles with long DNA templates that encode several times the sequence of the micelle corona induced a transformation into rod-like micelles. The Watson-Crick motif aligned the hydrophobic polymer segments along the DNA double helix, which resulted in selective dimer formation. Even the length of the resulting nanostructures could be precisely adjusted by the number of nucleotides of the templates. In addition to changing the structural properties of DNA-b-PPO micelles, these materials were applied as 3D nanoscopic scaffolds for organic reactions. The DNA strands of the corona were organized by hydrophobic interactions of the organic polymer segments in such a fashion that several DNA-templated organic reactions proceeded in a sequence specific manner; either at the surface of the micelles or at the interface between the biological and the organic polymer blocks. The yields of reactions employing the micellar template were equivalent or better than existing template architectures. Aside from its physical properties and the morphologies achieved, an important requirement for a new biomaterial is its biocompatibility and interaction with living systems, i.e. human cells. The toxicity of the nanoparticles was analyzed by a cell proliferation assay. Motivated by the non-toxic nature of the amphiphilic DNA block copolymers, these nanoobjects were employed as drug delivery vehicles to target the anticancer drug to a tumor tissue. The micelles obtained from DNA block copolymers were easily functionalized with targeting units by hybridization. This facile route allowed studying the effect of the amount of targeting units on the targeting efficacy. By varying the site of functionalization, i.e. 5’ or 3’, the outcome of having the targeting unit at the periphery of the micelle or in the core of the micelle was studied. Additionally, these micelles were loaded with an anticancer drug, doxorubicin, and then applied to tumor cells. The viability of the cells was calculated in the presence and absence of targeting unit. It was demonstrated that the tumor cells bearing folate receptors showed a high mortality when the targeting unit was attached to the nanocarrier.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die Aufklärung der Schlüsselrolle der RNA in zahlreichen biologischen Prozessen, die sich aus ihren selektiven Wechselwirkungen mit anderen RNA-Molekülen, Proteinen, Peptiden bzw. Antibiotika ergibt, ist für die Wirkstoffforschung von großer Bedeutung. Die Aminoglycoside und Antibiotika, die durch eine Hemmung der Proteinbiosynthese schon seit längerem bekannt sind, dienen als Leitstrukuren für die Synthese von weiteren Wirkstoffen. Die meisten Aminoglycosid-Antibiotika beinhalten Aminozucker, die mit dem rn2-Desoxystreptamin-Gerüst verbunden sind. Die stereochemische Vielfalt der Substitutionsstellen für Amino- und Hydroxylgruppen in diesem Gerüst und deren beschränkte konformative Flexibilität bieten vielseitige Möglichkeiten, um potenzielle RNA-Liganden so zu gestalten, dass es zu einer spezifischen Erkennung von RNA-Strukturen kommen kann. Ein wichtiger Vertreter dieser Antibiotika, Neomycin B, von dessen Struktur die Entwicklung des Diaminogalactose-Templates abgeleitet wurde, wurde in dieser Arbeit als Leitstruktur gewählt. Die Synthese von Diaminogalactose-Scaffolds wurde zunächst in Lösung durchgeführt. Anschließend wurden die Bausteine 2 und 4 an einen polymeren Träger gebunden.rnNach Prüfung der orthogonalen Stabilität der Schutzgruppen wurde mit den Scaffolds 2 und 4 eine Bibliothek von 65 Verbindungen hergestellt. Mit 42 dieser Verbindungen wurden anschließend Zellassays im Rahmen des Sonderforschungsbereichs 579 (RNA-Liganden-Wechselwirkungen) durchgeführt, um ihre Cytotoxizität zu prüfen. Für einzelne Verbindungen konnten die optimalen Konzentrationen bestimmt werden, bei denen zukünftige Tests für die Tat/TAR Wechselwirkung ohne störende cytotoxische Effekte durchgeführt werden können.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amphiphile Blockcopolymere sind in der Lage in Wasser Morphologien auszubilden, die analog sind zur hydrophil-hydrophob-hydrophil-Struktur von natürlichen Lipiddoppelschichten. In dieser Arbeit wird zum ersten Mal die Präparation und Charakterisierung von oberflächengestützten Polymerdoppelschichten aus Polybutadien-b-Polyethylenoxid (PB-PEO) beschrieben. Für die Herstellung dieser Strukturen wurden zwei unterschiedliche Präparationsstrategien verfolgt. Der erste Weg besteht aus einer zweistufigen Methode, bei der im ersten Schritt organisierte Monoschichten mittels Langmuir-Blodgett-Transfer auf Gold übertragen und kovalent angebunden werden. Im zweiten Schritt werden hydrophobe Wechselwirkungen ausgenutzt, um über Langmuir-Schaefer-Transfer eine weitere Schicht aufzubringen. Somit wurden homogene Architekturen erzeugt, die oberflächengestützten Lipiddoppelschichten gleichen. Als alternativer, einstufiger Ansatz zur Herstellung von Polymerdoppelschichten wurde das Spreiten von Polymervesikeln auf Gold verfolgt. Auch hierdurch ließen sich Doppelschichtstrukturen mit einer vollständigen Oberflächenbedeckung erzeugen. Die hergestellten Polymerdoppelschichten besitzen eine Dicke von 11-14 nm, die von der Präparationsmethode abhängt. Die Polymerstrukturen weisen bei Trocknung für 1.5 h eine Stabilität gegenüber Luft auf. Bei längeren Trocknungszeiten von ca. 12 h kommt es zu einer Reorganisation der Oberfläche. Dies deutet darauf hin, dass Wasser dazu notwendig ist die Strukturen auf lange Sicht zu stabilisieren. Um die Biokompatibilität der Polymerschichten nachzuweisen, wurden die Wechselwirkungen mit dem membranaktiven Peptid Polymyxin B und dem Transmembranprotein α-Haemolysin gezeigt. Mobilität ist ein wichtiger Faktor für die korrekte Funktion vieler Transmembranproteine. Um die laterale Diffusionsdynamik innerhalb der künstlichen Strukturen zu untersuchen, wurde die Mobilität eines integralen Modellpeptids und von fluoreszierenden Membransonden gemessen. Es konnte mit einzelmolekülempfindlichen Techniken gezeigt werden, dass das α-helikale Peptid und die kleinen Fluoreszenzfarbstoffe frei im hydrophoben Kern der Polymerdoppelschicht diffundieren können. Die Diffusion von beiden Spezies scheint stark von der Fluidität der Polymermatrix beeinflusst zu sein. Ein weiterer Teil dieser Arbeit widmet sich der Entwicklung eines angemessenen, lipidbasierten Referenzsystems für zukünftige Proteinuntersuchungen. Hierzu wurde eine neue Methode zu Herstellung von peptidgestützten Lipiddoppelschichtmembranen entwickelt. Dies wurde durch kovalente Befestigung eines Thiopeptids an einen Goldfilm und darauffolgende Anbindung eines Lipids erreicht. Zur Ausbildung der Lipiddoppelschicht auf dem Lipopeptidunterbau wurder der Rapid Solvent Exchange verwendet. Die Ausbildung der Lipiddoppelschicht wurde sowohl auf microskopischer als auch auf makroskopischer Ebene nachgewiesen. Im letzten Schritt wurde die Anwendbarkeit des Modelsystems für elektrochemische Messungen durch den funktionalen Einbau des Ionentransporters Valinomycin unter Beweis gestellt.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymer nanoparticles functionalized on the surface with photo-responsive labels were synthesized. In a first synthetic step, polystyrene was copolymerized with the cross-linker divinylbenzene and poly(ethylene glycol) acrylate in a miniemulsion, to produce nano-sized spheres (~ 60 nm radius) with terminal hydroxyl groups, which were functionalized in a subsequent synthetic step with photo-responsive labels. For this purpose, two photo-active molecular structures were separately used: anthracene, which is well known to form covalently bonded dimers upon photo-excitation; and pyrene, which only forms short lived excited state dimers (excimers). Acid derivatives of these labels (9-anthracene carboxylic acid and 1-pyrene butyric acid) were bonded to the hydroxyl terminal groups of the nanoparticles through an esterification reaction, via the intermediate formation of the corresponding acid chloride.rnThe obtained labeled nanoparticles appeared to be highly hydrophobic structures. They formed lyophobic suspensions in water, which after analysis by dynamic light scattering (DLS) and ultramicroscopic particle tracking, appeared to equilibrate as a collection of singly dispersed nanoparticles, together with a few nanoparticle aggregates. The relative amount of aggregates decreased with increasing amounts of the surfactant sodium dodecyl sulfate (SDS), thus confirming that aggregation is an equilibrated state resulting from lyophobicity. The formation of such aggregates was corroborated using scanning electron microscopy (SEM). The photo-irradiation of the lyophobic aqueous suspensions of anthracene labeled nanoparticles (An-NP) resulted in the formation of higher aggregates, as evidenced by DLS and ultramicroscopy. The obtained state of aggregation could be reverted by sonication. The possibility to re-aggregate the system in subsequent photo-excitation and sonication cycles was established. Likewise, the photo-irradiation of lyophobic aqueous suspensions of pyrene-labeled nanoparticles (Py-NP) resulted in the formation of higher aggregates, as evidenced by DLS and ultramicroscopy. These appeared to remain aggregated due to hydrophobic interactions. This system could also be re-dispersed by sonication and re-aggregated in subsequent cycles of photo-excitation and sonication.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis aims at connecting structural and functional changes of complex soft matter systems due to external stimuli with non-covalent molecular interaction profiles. It addresses the problem of elucidating non-covalent forces as structuring principle of mainly polymer-based systems in solution. The structuring principles of a wide variety of complex soft matter types are analyzed. In many cases this is done by exploring conformational changes upon the exertion of external stimuli. The central question throughout this thesis is how a certain non-covalent interaction profile leads to solution condition-dependent structuring of a polymeric system.rnTo answer this question, electron paramagnetic resonance (EPR) spectroscopy is chosen as the main experimental method for the investigation of the structure principles of polymers. With EPR one detects only the local surroundings or environments of molecules that carry an unpaired electron. Non-covalent forces are normally effective on length scales of a few nanometers and below. Thus, EPR is excellently suited for their investigations. It allows for detection of interactions on length scales ranging from approx. 0.1 nm up to 10 nm. However, restriction to only one experimental technique likely leads to only incomplete pictures of complex systems. Therefore, the presented studies are frequently augmented with further experimental and computational methods in order to yield more comprehensive descriptions of the systems chosen for investigation.rnElectrostatic correlation effects in non-covalent interaction profiles as structuring principles in colloid-like ionic clusters and DNA condensation are investigated first. Building on this it is shown how electrostatic structuring principles can be combined with hydrophobic ones, at the example of host-guest interactions in so-called dendronized polymers (denpols).rnSubsequently, the focus is shifted from electrostatics in dendronized polymers to thermoresponsive alkylene oxide-based materials, whose structuring principles are based on hydrogen bonds and counteracting hydrophobic interactions. The collapse mechanism in dependence of hydrophilic-hydrophobic balance and topology of these polymers is elucidated. Complementarily the temperature-dependent phase behavior of elastin-like polypeptides (ELPs) is investigated. ELPs are the first (and so far only) class of compounds that is shown to feature a first-order inverse phase transition on nanoscopic length scales.rnFinally, this thesis addresses complex biological systems, namely intrinsically disordered proteins (IDPs). It is shown that the conformational space of the IDPs Osteopontin (OPN), a cytokine involved in metastasis of several kinds of cancer, and BASP1 (brain acid soluble protein one), a protein associated with neurite outgrowth, is governed by a subtle interplay between electrostatic forces, hydrophobic interaction, system entropy and hydrogen bonds. Such, IDPs can even sample cooperatively folded structures, which have so far only been associated with globular proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurde gezeigt, wie man das Potential nanopartikulärer Systeme, die vorwiegend via Miniemulsion hergestellt wurden, im Hinblick auf „Drug Delivery“ ausnutzen könnte, indem ein Wirkstoffmodell auf unterschiedliche Art und Weise intrazellulär freigesetzt wurde. Dies wurde hauptsächlich mittels konfokaler Laser-Raster-Mikrokopie (CLSM) in Kombination mit dem Bildbearbeitungsprogramm Volocity® analysiert.rnPBCA-Nanokapseln eigneten sich besonders, um hydrophile Substanzen wie etwa Oligonukleotide zu verkapseln und sie so auf ihrem Transportweg in die Zellen vor einem etwaigen Abbau zu schützen. Es konnte eine Freisetzung der Oligonukleotide in den Zellen aufgrund der elektrostatischen Anziehung des mitochondrialen Membranpotentials nachgewiesen werden. Dabei war die Kombination aus Oligonukleotid und angebundenem Cyanin-Farbstoff (Cy5) an der 5‘-Position der Oligonukleotid-Sequenz ausschlaggebend. Durch quantitative Analysen mittels Volocity® konnte die vollständige Kolokalisation der freigesetzten Oligonukleotide an Mitochondrien bewiesen werden, was anhand der Kolokalisationskoeffizienten „Manders‘ Coefficients“ M1 und M2 diskutiert wurde. Es konnte ebenfalls aufgrund von FRET-Studien doppelt markierter Oligos gezeigt werden, dass die Oligonukleotide weder beim Transport noch bei der Freisetzung abgebaut wurden. Außerdem wurde aufgeklärt, dass nur der Inhalt der Nanokapseln, d. h. die Oligonukleotide, an Mitochondrien akkumulierte, das Kapselmaterial selbst jedoch in anderen intrazellulären Bereichen aufzufinden war. Eine Kombination aus Cyanin-Farbstoffen wie Cy5 mit einer Nukleotidsequenz oder einem Wirkstoff könnte also die Basis für einen gezielten Wirkstofftransport zu Mitochondrien liefern bzw. die Grundlage schaffen, eine Freisetzung aus Kapseln ins Zytoplasma zu gewährleisten.rnDer vielseitige Einsatz der Miniemulsion gestattete es, nicht nur Kapseln sondern auch Nanopartikel herzustellen, in welchen hydrophobe Substanzen im Partikelkern eingeschlossen werden konnten. Diese auf hydrophobe Wechselwirkungen beruhende „Verkapselung“ eines Wirkstoffmodells, in diesem Fall PMI, wurde bei PDLLA- bzw. PS-Nanopartikeln ausgenutzt, welche durch ein HPMA-basiertes Block-Copolymer stabilisiert wurden. Dabei konnte gezeigt werden, dass das hydrophobe Wirkstoffmodell PMI innerhalb kürzester Zeit in die Zellen freigesetzt wurde und sich in sogenannte „Lipid Droplets“ einlagerte, ohne dass die Nanopartikel selbst aufgenommen werden mussten. Daneben war ein intrazelluläres Ablösen des stabilisierenden Block-Copolymers zu verzeichnen, welches rn8 h nach Partikelaufnahme erfolgte und ebenfalls durch Analysen mittels Volocity® untermauert wurde. Dies hatte jedoch keinen Einfluss auf die eigentliche Partikelaufnahme oder die Freisetzung des Wirkstoffmodells. Ein großer Vorteil in der Verwendung des HPMA-basierten Block-Copolymers liegt darin begründet, dass auf zeitaufwendige Waschschritte wie etwa Dialyse nach der Partikelherstellung verzichtet werden konnte, da P(HPMA) ein biokompatibles Polymer ist. Auf der anderen Seite hat man aufgrund der Syntheseroute dieses Block-Copolymers vielfältige Möglichkeiten, Funktionalitäten wie etwa Fluoreszenzmarker einzubringen. Eine kovalente Anbindung eines Wirkstoffs ist ebenfalls denkbar, welcher intrazellulär z. B. aufgrund von enzymatischen Abbauprozessen langsam freigesetzt werden könnte. Somit bietet sich die Möglichkeit mit Nanopartikeln, die durch HPMA-basierte Block-Copolymere stabilisiert wurden, gleichzeitig zwei unterschiedliche Wirkstoffe in die Zellen zu bringen, wobei der eine schnell und der zweite über einen längeren Zeitraum hinweg (kontrolliert) freigesetzt werden könnte.rnNeben Nanokapseln sowie –partikeln, die durch inverse bzw. direkte Miniemulsion dargestellt wurden, sind auch Nanohydrogelpartikel untersucht worden, die sich aufgrund von Selbstorganisation eines amphiphilen Bock-Copolymers bildeten. Diese Nanohydrogelpartikel dienten der Komplexierung von siRNA und wurden hinsichtlich ihrer Anreicherung in Lysosomen untersucht. Aufgrund der Knockdown-Studien von Lutz Nuhn konnte ein Unterschied in der Knockdown-Effizienz festgestellt werden, je nach dem, ob 100 nm oder 40 nm große Nanohydrogelpartikel verwendet wurden. Es sollte festgestellt werden, ob eine größenbedingte, unterschiedlich schnelle Anreicherung dieser beiden Partikel in Lysosomen erfolgte, was die unterschiedliche Knockdown-Effizienz erklären könnte. CLSM-Studien und quantitative Kolokalisationsstudien gaben einen ersten Hinweis auf diese Größenabhängigkeit. rnBei allen verwendeten nanopartikulären Systemen konnte eine Freisetzung ihres Inhalts gezeigt werden. Somit bieten sie ein großes Potential als Wirkstoffträger für biomedizinische Anwendungen.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surface platforms were engineered from poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL-g-PMOXA) copolymers to study the mechanisms involved in the non-specific adhesion of Escherichia coli (E. coli) bacteria. Copolymers with three different grafting densities (PMOXA chains/Lysine residue of 0.09, 0.33 and 0.56) were synthesized and assembled on niobia (Nb O ) surfaces. PLL-modified and bare niobia surfaces served as controls. To evaluate the impact of fimbriae expression on the bacterial adhesion, the surfaces were exposed to genetically engineered E. coli strains either lacking, or constitutively expressing type 1 fimbriae. The bacterial adhesion was strongly influenced by the presence of bacterial fimbriae. Non-fimbriated bacteria behaved like hard, charged particles whose adhesion was dependent on surface charge and ionic strength of the media. In contrast, bacteria expressing type 1 fimbriae adhered to the substrates independent of surface charge and ionic strength, and adhesion was mediated by non-specific van der Waals and hydrophobic interactions of the proteins at the fimbrial tip. Adsorbed polymer mass, average surface density of the PMOXA chains, and thickness of the copolymer films were quantified by optical waveguide lightmode spectroscopy (OWLS) and variable-angle spectroscopic ellipsometry (VASE), whereas the lateral homogeneity was probed by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Streaming current measurements provided information on the charge formation of the polymer-coated and the bare niobia surfaces. The adhesion of both bacterial strains could be efficiently inhibited by the copolymer film only with a grafting density of 0.33 characterized by the highest PMOXA chain surface density and a surface potential close to zero.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antibodies which bind bioactive ligands can serve as a template for the generation of a second antibody which may react with the physiological receptor. This phenomenon of molecular mimicry by antibodies has been described in a variety of systems. In order to understand the chemical and molecular mechanisms involved in these interactions, monoclonal antibodies directed against two pharmacologically active alkaloids, morphine and nicotine, were carefully studied using experimental and theoretical molecular modeling techniques. The molecular characterization of these antibodies involved binding studies with ligand analogs and determination of the variable region amino acid sequence. A three-dimensional model of the anti-morphine binding site was constructed using computational and graphics display techniques. The antibody response in BALB/c mice to morphine appears relatively restricted, in that all of the antibodies examined in this study contained a $\lambda$ light chain, which is normally found in only 5% of mouse immunoglobulins. This study represents the first use of theoretical and experimental modeling techniques to describe the antigen binding site of a mouse Fv region containing a $\lambda$ light chain. The binding site model indicates that a charged glutamic acid residue and aromatic side chains are key features in ionic and hydrophobic interactions with the ligand morphine. A glutamic acid residue is found in the identical position in the anti-nicotine antibody and may play a role in binding nicotine. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Contraction of vertebrate cardiac muscle is regulated by the binding of Ca$\sp{2+}$ to the troponin C (cTnC) subunit of the troponin complex. In this study, we have used site-directed mutagenesis and a variety of assay techniques to explore the functional roles of regions in cTnC, including Ca$\sp{2+}$/Mg$\sp{2+}$-binding sites III and IV, the functionally inactive site I, the N-terminal helix, the N-terminal hydrophobic pocket and the two cysteine residues with regard to their ability to form disulfide bonds. Conversion of the first Ca$\sp{2+}$ ligand from Asp to Ala inactivated sites III and IV and decreased the apparent affinity of cTnC for the thin filament. Conversion of the second ligand from Asn to Ala also inactivated these sites in the free protein but Ca$\sp{2+}$-binding was recovered upon association with troponin I and troponin T. The Ca$\sp{2+}$-concentrations required for tight thin filament-binding by proteins containing second-ligand mutations were significantly greater than that required for the wild-type protein. Mutation of site I such that the primary sequence was that of an active site with the first Ca$\sp{2+}$ ligand changed from Asp to Ala resulted in a 70% decrease in maximal Ca$\sp{2\sp+}$ dependent ATPase activity in both cardiac and fast skeletal myofibrils. Thus, the primary sequence of the inactive site I in cTnC is functionally important. Major changes in the sequence of the N-terminus had little effect on the ability of cTnC to recover maximal activity but deletion of the first nine residues resulted in a 60 to 80% decrease in maximal activity with only a minor decrease in the pCa$\sb{50}$ of activation, suggesting that the N-terminal helix must be present but that a specific sequence is not required. The formation of an inter- or intramolecular disulfide bonds caused the exposure of hydrophobic surfaces on cTnC and rendered the protein Ca$\sp{2+}$ independent. Finally, elution patterns from a hydrophobic interactions column suggest that cTnC undergoes a significant change in hydrophobicity upon Ca$\sp{2+}$ binding, the majority of which is caused by site II. These latter data show an interesting correlation between exposure of hydrophobic surfaces on and activation of cTnC. Overall, these results represent significant progress toward the elucidation of the functional roles of a variety of structural regions in cTnC. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

10.1002/hlca.200390311.abs A series of oligonucleotides containing (5′S)-5′-C-butyl- and (5′S)-5′-C-isopentyl-substituted 2′-deoxyribonucleosides were designed, prepared, and characterized with the intention to explore alkyl-zipper formation between opposing alkyl chains across the minor groove of oligonucleotide duplexes as a means to modulate DNA-duplex stability. From four possible arrangements of the alkyl groups that differ in the density of packing of the alkyl chains across the minor groove, three (duplex types I–III, Fig. 2) could experimentally be realized and their duplex-forming properties analyzed by UV-melting curves, CD spectroscopy, and isothermal titration calorimetry (ITC), as well as by molecular modeling. The results show that all arrangements of alkyl residues within the minor groove of DNA are thermally destabilizing by 1.5–3°/modification in Tm. We found that, within the proposed duplexes with more loosely packed alkyl groups (type-III duplexes), accommodation of alkyl residues without extended distorsion of the helical parameters of B-DNA is possible but does not lead to higher thermodynamic stability. The more densely packed and more unevenly distributed arrangement (type-II duplexes) seems to suffer from ecliptic positioning of opposite alkyl groups, which might account for a systematic negative contribution to stability due to steric interactions. The decreased stability in the type-III duplexes described here may be due either to missing hydrophobic interactions of the alkyl groups (not bulky enough to make close contacts), or to an overcompensation of favorable alkyl-zipper formation presumably by loss of structured H2O in the minor groove.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conjugation of functional entities with a specific set of optical, mechanical or biological properties to DNA strands allows engineering of sophisticated DNA-containing architectures. Among various hybrid systems, DNA-grafted polymers occupy an important place in modern materials science. In this contribution we present the non-covalent synthesis and properties of DNA-grafted linear supramolecular polymers (SPs), which are assembled in a controllable manner from short chimeric DNA-pyrene oligomers. The synthetic oligomers consist of two parts: a 10 nucleotides long DNA chain and a covalently attached segment of variable number of phosphodiester-linked pyrenes. The temperature-dependent formation of DNA-grafted SPs is described by a nucleation-elongation mechanism. The high tendency of pyrenes to aggregate in water, leads to the rapid formation of SPs. The core of the assemblies consists of stacked pyrenes. They form a 1D platform, to which the DNA chains are attached. Combined spectroscopic and microscopic studies reveal that the major driving forces of the polymerization are π-stacking of pyrenes and hydrophobic interactions, and DNA pairing contributes to a lesser extent. AFM and TEM experiments demonstrate that the 1D SPs appear as elongated ribbons with a length of several hundred nanometers. They exhibit an apparent helical structure with a pitch-to-pitch distance of 50±15 nm. Since DNA pairing is a highly selective process, the ongoing studies are aimed to utilize DNA-grafted SPs for the programmable arrangement of functional entities. For example, the addition of non-modified complementary DNA strands to the DNA-grafted SPs leads to the cooperative formation of higher-order assemblies. Also, our experiments suggest that the fluorescent pyrene core of 1D ribbons serves as an efficient donor platform for energy transfer applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conjugation of functional entities with a specific set of optical, mechanical or biological properties to DNA strands allows engineering of sophisticated DNA-containing architectures. Among various hybrid systems, DNA-grafted polymers occupy an important place in modern materials science. In this contribution we present the non-covalent synthesis and properties of DNA-grafted linear supramolecular polymers (SPs), which are assembled in a controllable manner from short chimeric DNA-pyrene oligomers. The synthetic oligomers consist of two parts: a 10 nucleotides long DNA chain and a covalently attached segment of variable number of phosphodiester-linked pyrenes. The temperature-dependent formation of DNA-grafted SPs is described by a nucleation-elongation mechanism. The high tendency of pyrenes to aggregate in water, leads to the rapid formation of SPs. The core of the assemblies consists of stacked pyrenes. They form a 1D platform, to which the DNA chains are attached. Combined spectroscopic and microscopic studies reveal that the major driving forces of the polymerization are π-stacking of pyrenes and hydrophobic interactions, and DNA pairing contributes to a lesser extent. AFM and TEM experiments demonstrate that the 1D SPs appear as elongated ribbons with a length of several hundred nanometers. They exhibit an apparent helical structure with a pitch-to-pitch distance of 50±15 nm. Since DNA pairing is a highly selective process, the ongoing studies are aimed to utilize DNA-grafted SPs for the programmable arrangement of functional entities. For example, the addition of non-modified complementary DNA strands to the DNA-grafted SPs leads to the cooperative formation of higher-order assemblies. Also, our experiments suggest that the fluorescent pyrene core of 1D ribbons serves as an efficient donor platform for energy transfer applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the crystal structures of the SEC14-like domain of supernatant protein factor (SPF) in complex with squalene and 2,3-oxidosqualene. The structures were resolved at 1.75 Å (complex with squalene) and 1.6 Å resolution (complex with 2,3-oxidosqualene), leading in both cases to clear images of the protein/ substrate interactions. Ligand binding is facilitated by removal of the Golgi-dynamics (GOLD) C-terminal domain of SPF, which, as shown in previous structures of the apo-protein, blocked the opening of the binding pocket to the exterior. Both substrates bind into a large hydrophobic cavity, typical of such lipid-transporter family. Our structures report no specific recognition mode for the epoxide group. In fact, for both molecules, ligand affinity is dominated by hydrophobic interactions, and independent investigations by computational models or differential scanning micro-calorimetry reveal similar binding affinities for both ligands. Our findings elucidate the molecular bases of the role of SPF in sterol endo-synthesis, supporting the original hypothesis that SPF is a facilitator of substrate flow within the sterol synthetic pathway. Moreover, our results suggest that the GOLD domain acts as a regulator, as its conformational displacement must occur to favor ligand binding and release during the different synthetic steps.