950 resultados para hydrogen production
Resumo:
Les défis conjoints du changement climatique d'origine anthropique et la diminution des réserves de combustibles fossiles sont le moteur de recherche intense pour des sources d'énergie alternatives. Une avenue attrayante est d'utiliser un processus biologique pour produire un biocarburant. Parmi les différentes options en matière de biocarburants, le bio-hydrogène gazeux est un futur vecteur énergétique attrayant en raison de son efficacité potentiellement plus élevé de conversion de puissance utilisable, il est faible en génération inexistante de polluants et de haute densité d'énergie. Cependant, les faibles rendements et taux de production ont été les principaux obstacles à l'application pratique des technologies de bio-hydrogène. Des recherches intensives sur bio-hydrogène sont en cours, et dans les dernières années, plusieurs nouvelles approches ont été proposées et étudiées pour dépasser ces inconvénients. À cette fin, l'objectif principal de cette thèse était d'améliorer le rendement en hydrogène moléculaire avec un accent particulier sur l'ingénierie métabolique et l’utilisation de bioprocédés à variables indépendantes. Une de nos hypothèses était que la production d’hydrogène pourrait être améliorée et rendue plus économiquement viable par ingénierie métabolique de souches d’Escherichia coli producteurs d’hydrogène en utilisant le glucose ainsi que diverses autres sources de carbone, y compris les pentoses. Les effets du pH, de la température et de sources de carbone ont été étudiés. La production maximale d'hydrogène a été obtenue à partir de glucose, à un pH initial de 6.5 et une température de 35°C. Les études de cinétiques de croissance ont montré que la μmax était 0.0495 h-1 avec un Ks de 0.0274 g L-1 lorsque le glucose est la seule source de carbone en milieu minimal M9. .Parmi les nombreux sucres et les dérivés de sucres testés, les rendements les plus élevés d'hydrogène sont avec du fructose, sorbitol et D-glucose; 1.27, 1.46 et 1.51 mol H2 mol-1 de substrat, respectivement. En outre, pour obtenir les interactions entre les variables importantes et pour atteindre une production maximale d'hydrogène, un design 3K factoriel complet Box-Behnken et la méthodologie de réponse de surface (RSM) ont été employées pour la conception expérimentale et l'analyse de la souche d'Escherichia coli DJT135. Le rendement en hydrogène molaire maximale de 1.69 mol H2 mol-1 de glucose a été obtenu dans les conditions optimales de 75 mM de glucose, à 35°C et un pH de 6.5. Ainsi, la RSM avec un design Box-Behken était un outil statistique utile pour atteindre des rendements plus élevés d'hydrogène molaires par des organismes modifiés génétiquement. Ensuite, l'expression hétérologue de l’hydrogénases soluble [Ni-Fe] de Ralstonia eutropha H16 (l'hydrogénase SH) a tenté de démontrer que la mise en place d'une voie capable de dériver l'hydrogène à partir de NADH pourrait surpasser le rendement stoechiométrique en hydrogène.. L’expression a été démontrée par des tests in vitro de l'activité enzymatique. Par ailleurs, l'expression de SH a restaurée la croissance en anaérobie de souches mutantes pour adhE, normalement inhibées en raison de l'incapacité de réoxyder le NADH. La mesure de la production d'hydrogène in vivo a montré que plusieurs souches modifiées métaboliquement sont capables d'utiliser l'hydrogénase SH pour dériver deux moles d’hydrogène par mole de glucose consommé, proche du maximum théorique. Une autre stratégie a montré que le glycérol brut pourrait être converti en hydrogène par photofermentation utilisant Rhodopseudomonas palustris par photofermentation. Les effets de la source d'azote et de différentes concentrations de glycérol brut sur ce processus ont été évalués. À 20 mM de glycérol, 4 mM glutamate, 6.1 mol hydrogène / mole de glycérol brut ont été obtenus dans des conditions optimales, un rendement de 87% de la théorie, et significativement plus élevés que ce qui a été réalisé auparavant. En prolongement de cette étude, l'optimisation des paramètres a également été utilisée. Dans des conditions optimales, une intensité lumineuse de 175 W/m2, 30 mM glycérol et 4.5 mM de glutamate, 6.69 mol hydrogène / mole de glycérol brut ont été obtenus, soit un rendement de 96% de la valeur théorique. La détermination de l'activité de la nitrogénase et ses niveaux d'expression ont montré qu'il y avait relativement peu de variation de la quantité de nitrogénase avec le changement des variables alors que l'activité de la nitrogénase variait considérablement, avec une activité maximale (228 nmol de C2H4/ml/min) au point central optimal. Dans la dernière section, la production d'hydrogène à partir du glucose via la photofermentation en une seule étape a été examinée avec la bactérie photosynthétique Rhodobacter capsulatus JP91 (hup-). La méthodologie de surface de réponse avec Box-Behnken a été utilisée pour optimiser les variables expérimentales de façon indépendante, soit la concentration de glucose, la concentration du glutamate et l'intensité lumineuse, ainsi que d'examiner leurs effets interactifs pour la maximisation du rendement en hydrogène moléculaire. Dans des conditions optimales, avec une intensité lumineuse de 175 W/m2, 35 mM de glucose, et 4.5 mM de glutamate,, un rendement maximal d'hydrogène de 5.5 (± 0.15) mol hydrogène /mol glucose, et un maximum d'activité de la nitrogénase de 246 (± 3.5) nmol C2H4/ml/min ont été obtenus. L'analyse densitométrique de l'expression de la protéine-Fe nitrogenase dans les différentes conditions a montré une variation significative de l'expression protéique avec un maximum au point central optimisé. Même dans des conditions optimales pour la production d'hydrogène, une fraction significative de la protéine Fe a été trouvée dans l'état ADP-ribosylée, suggérant que d'autres améliorations des rendements pourraient être possibles. À cette fin, un mutant amtB dérivé de Rhodobacter capsulatus JP91 (hup-) a été créé en utilisant le vecteur de suicide pSUP202. Les résultats expérimentaux préliminaires montrent que la souche nouvellement conçue métaboliquement, R. capsulatus DG9, produit 8.2 (± 0.06) mol hydrogène / mole de glucose dans des conditions optimales de cultures discontinues (intensité lumineuse, 175 W/m2, 35 mM de glucose et 4.5 mM glutamate). Le statut d'ADP-ribosylation de la nitrogénase-protéine Fe a été obtenu par Western Blot pour la souche R. capsulatus DG9. En bref, la production d'hydrogène est limitée par une barrière métabolique. La principale barrière métabolique est due au manque d'outils moléculaires possibles pour atteindre ou dépasser le rendement stochiométrique en bio-hydrogène depuis les dernières décennies en utilisant les microbes. À cette fin, une nouvelle approche d’ingénierie métabolique semble très prometteuse pour surmonter cette contrainte vers l'industrialisation et s'assurer de la faisabilité de la technologie de la production d'hydrogène. Dans la présente étude, il a été démontré que l’ingénierie métabolique de bactéries anaérobiques facultatives (Escherichia coli) et de bactéries anaérobiques photosynthétiques (Rhodobacter capsulatus et Rhodopseudomonas palustris) peuvent produire de l'hydrogène en tant que produit majeur à travers le mode de fermentation par redirection métabolique vers la production d'énergie potentielle. D'autre part, la méthodologie de surface de réponse utilisée dans cette étude représente un outil potentiel pour optimiser la production d'hydrogène en générant des informations appropriées concernant la corrélation entre les variables et des producteurs de bio-de hydrogène modifiés par ingénierie métabolique. Ainsi, un outil d'optimisation des paramètres représente une nouvelle avenue pour faire un pont entre le laboratoire et la production d'hydrogène à l'échelle industrielle en fournissant un modèle mathématique potentiel pour intensifier la production de bio-hydrogène. Par conséquent, il a été clairement mis en évidence dans ce projet que l'effort combiné de l'ingénierie métabolique et la méthodologie de surface de réponse peut rendre la technologie de production de bio-hydrogène potentiellement possible vers sa commercialisation dans un avenir rapproché.
Resumo:
L’azote est l’élément le plus abondant dans l’atmosphère terrestre avec un pourcentage atteignant 78 %. Composant essentiel pour la biosynthèse des matériels organiques cellulaires, il est inutilisable sous sa forme diatomique (N2) très stable par la plupart des organismes. Seules les bactéries dites diazotrophiques comme Rhodobacter capsulatus sont capables de fixer l’azote moléculaire N2 par le biais de la synthèse d’une enzyme, la nitrogénase. Cette dernière catalyse la réduction du N2 en ammonium (NH4) qui peut alors être assimilé par d’autres organismes. La synthèse et l’activité de la nitrogénase consomment beaucoup d’énergie ce qui implique une régulation rigoureuse et son inhibition tant qu’une quantité suffisante d’ammonium est disponible. Parmi les protéines impliquées dans cette régulation, la protéine d’intérêt AmtB est un transporteur membranaire responsable de la perception et le transport de l’ammonium. Chez R. capsulatus, il a été démontré que suite à l’addition de l’ammonium, l’AmtB inhibe de façon réversible (switch off/switch on) l’activité de la nitrogénase en séquestrant la protéine PII GlnK accompagnée de l’ajout d’un groupement ADP ribose sur la sous unités Fe de l’enzyme par DraT. De plus, la formation de ce complexe à lui seul ne serait pas suffisant pour cette inactivation, ce qui suggère la séquestration d’une troisième protéine, DraG, afin d’inhiber son action qui consiste à enlever l’ADP ribose de la nitrogénase et donc sa réactivation. Afin de mieux comprendre le fonctionnement de l’AmtB dans la régulation et le transport de l’ammonium à un niveau moléculaire et par la même occasion la fixation de l’azote, le premier volet de ce mémoire a été d’introduire une mutation ponctuelle par mutagénèse dirigée au niveau du résidu conservé W237 de l’AmtB. La production d’hydrogène est un autre aspect longtemps étudié chez R. capsulatus. Cette bactérie est capable de produire de l’hydrogène à partir de composés organiques par photofermentation suite à l’intervention exclusive de la nitrogénase. Plusieurs études ont été entreprises afin d’améliorer la production d’hydrogène. Certaines d’entre elles se sont intéressées à déterminer les conditions optimales qui confèrent une production maximale de gaz tandis que d’autres s’intéressent au fonctionnement de la bactérie elle même. Ainsi, le fait que la bioproduction de H2 par fermentation soit catalysée par la nitrogénase cela implique la régulation de l’activité de cette dernière par différents mécanismes dont le switch off par ADP ribosylation de l’enzyme. De ce fait, un mutant de R. capsulatus dépourvu d’AmtB (DG9) a été étudié dans la deuxième partie de cette thèse en termes d’activité de la nitrogénase, de sa modification par ADP ribosylation avec la détection des deux protéines GlnK et DraG qui interviennent dans cette régulation pour connaitre l’influence de différents acides aminés sur la régulation de la nitrogénase et pour l‘utilisation future de cette souche dans la production d’H2 car R. capsulatus produit de l’hydrogène par photofermentation grâce à cette enzyme. Les résultats obtenus ont révélé une activité de la nitrogénase continue et ininterrompue lorsque l’AmtB est absent avec une activité maximale quand la proline est utilisée comme source d’azote durant la culture bactérienne ce qui implique donc que l’abolition de l’activité de cette protéine entraine une production continue d’H2 chez R. capsulatus lorsque la proline est utilisée comme source d’azote lors de la culture bactérienne. Par ailleurs, avec des Western blots on a pu déterminer l’absence de régulation par ADP ribosylation ainsi que les expressions respectives de GlnK et DraG inchangées entre R. capsulatus sauvage et muté. En conclusion, la nitrogénase n’est pas modifiée et inhibée lorsque l’amtB est muté ce qui fait de la souche R. capsulatus DG9 un candidat idéal pour la production de biohydrogène en particulier lorsque du glucose et de la proline sont respectivement utilisés comme source de carbone et d'azote pour la croissance.
Resumo:
The present work describes the photoelectrochemical hydrogen generation during a photodegradation of an organic compound. For this, it was chosen the reactive black 5 dye as a model of organic pollutant and its oxidation under TiO2 nanotube in a two compartment cell. The photoelectrocatalysis is conducted in 0.1 mol L-1 Na2SO4 pH 6 medium under photoanode biased at +1.0 V (SCE) and activated by UV and visible light using 150W Xe-Arc lamp (Oriel) and 125 W Hg lamp (Osram). The concomitant hydrogen production was monitored at cathodic compartment using a Pt cathode. Using optimized condition of Na2SO4 0.1 mol L-1 pH 6 as supporting electrolyte, applied potential of +1.0V it was verified 100% of discoloration and 72% of TOC removal of 1.0 x 10(-5) mol L-1 Reactive Black 5 dye after 120 min of treatment (rate constant of 10.6 x10(-2) min(-1)). The concomitant hydrogen generation was 44% in this condition.
Resumo:
Hydrogen is known as a clean energy resource. The biological production of hydrogen has been attracting attention as an environmentally friendly processs that does not consume fossil fuels. Cellulosic plant and waste materials are potential resources for fermentative hydrogen production. Cellulose is a linear biopolymer of glucose molecules, connected by β-1,4-glycosidic bonds. Enzymatic hydrolysis of cellulose requires the presence of cellulase. The present study aimed to investigate the efficiency of acid pretreatment on ruminal fluid in order to enrich H2 producing bacteria consortia to enhance biohydrogen rate and substrate removal efficiency. In this study, fermentative hydrogen producers were enriched on cellulose (2g/L) in a modificated Del Nery medium (DNM) at 37ºC and initial pH 7.0 using rumen fluid (10% v/v) as inoculum. To increase the hydrogen production it was added cellulose (10mL) to the medium. The gas products (mainly H2 and CO2) was analyzed by gas chromatography (Shimadzu GC 2010) using a thermal conductivity detector. The volatile fatty acids and ethanol were also detected by GC using a flame ionization detector. Cellulose degradation was quantified by using the phenolsulfuric acid method. Analysis showed that the biogas produced from the anaerobic fermentation contained only hydrogen and carbon dioxide, without detectable methane after acid pretreatment test. On DNM the hydrogen production started with 4 h (5,3 x 105 mmol H2/L) of incubation, and the maximum H2 concentration was observed with 34 h (7,1 x 106 mmol H2/L) of incubation. During the process, it was observed a predominance of acetic acid and butyric acid as well as a low production of acetone, ethanol and nbutanol in all experimental phases. Butyrate accounted for more than 77% of total. As a result of the accumulation of volatile fatty acids (VFAs), the pH value in anaerobic digestion system was reduced to 4,0. On microscopy analyses there were observed rods with endospores. The batch anaerobic fermentation assays performed on anaerobic mixed inoculum from rumen fluid demonstrated the feasibility of H2 generation utilizing cellulose as substrate. Based on the results, it can be concluded that the acid treatment was efficient to inhibit the methanogenic archaea cells present in rumen fluid. The rumen fluid cells present a potential route in converting renewable biomass such as cellulose into hydrogen energy.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
On January 1 2008, Brazil included yet another element into its energy matrix: biodiesel. The predominant biodiesel production process involves a phase of transesterification that yields glycerol as a by-product. The use of this glycerol is limited since it is considered an unrefined raw material that must be refined for its various types of use. Several studies have addressed identification of possible uses for unrefined glycerol. Given the diversity of uses, an overview is necessary. The purpose of this work is to present alternatives currently being considered for the use of unrefined glycerol as a by-product of biodiesel production, aiming to contribute to the sustainable consolidation of the biofuel market. Exploratory research was carried out to identify these viable alternatives for the use of this by-product. The possibilities include the production of chemical products, fuel additives, production of hydrogen, development of fuel cells, ethanol or methanol production, animal feed, co-digestion and co-gasification, and waste treatment among others. The present research reveals that there are promising possibilities for the use of unrefined glycerol, which may help consolidate the sustainability of the biofuel market. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The research of new catalysts for the hydrogen production described in this thesis was inserted within a collaboration of Department of Industrial Chemistry and Materials of University of Bologna and Air Liquide (Centre de Recherche Claude-Delorme, Paris). The aim of the work was focused on the study of new materials, active and stable in the hydrogen production from methane, using either a new process, the catalytic partial oxidation (CPO), or a enhanced well-established process, the steam methane reforming (SMR). Two types of catalytic materials were examined: 1) Bulk catalysts, i.e. non-supported materials, in which the active metals (Ni and/or Rh) are stabilized inside oxidic matrix, obtained from perovskite type compounds (PVK) and from hydrotalcite type precursors (HT); 2) Structured catalysts, i.e. catalysts supported on materials having high thermal conductivity (SiC and metallic foams). As regards the catalytic partial oxidation, the effect of the metal (Ni and/or Rh), the role of the metal/matrix ratio and the matrix formulation of innovative catalysts obtained from hydrotalcite type precursors and from perovskites were examined. In addition, about steam reforming process, the study was carried out first on commercial type catalysts, examining the deactivation in industrial conditions, the role of the operating conditions and the activity of different type of catalysts. Then, innovative materials bulk (PVK and HT) and structured catalysts (SiC and metallic foam) were studied and a new preparation method was developed.
Resumo:
This work describes hydrogen production by anaerobic digestion of glucose, molasses and milk whey by 4 thermophilic Thermotoga strains. In the attached-cell tests, the biofilm support characterized by the highest specific surface resulted in the best H2 rate. All the Thermotoga strains examined (T. neapolitana, T. maritima, T. naphtophila, T. petrophila) could produce H2 from glucose, molasses and milk whey, both in suspended- and attached-cell tests. With all the three substrates, the best performances were obtained with T. neapolitana. Some tests were conducted out to select the optimal carrier for the attached-cell conditions. 4 types of carrier were tested: 3 sintered glass carriers and a ceramic one; the chosen carrier was Biomax.
Resumo:
The progressive depletion of fossil fuels and their high contribution to the energy supply in this modern society forces that will be soon replaced by renewable fuels. But the dispersion and alternation of renewable energy production also undertake to reduce their costs to use as energy storage and hydrogen carrier. It is necessary to develop technologies for hydrogen production from all renewable energy storage technologies and the development of energy production from hydrogen fuel cells and cogeneration and tri generation systems. In order to propel this technological development discussed where the hydrogen plays a key role as energy storage and renewable energy, the National Centre of Hydrogen and Fuel Cell Technology Experimentation in Spain equipped with installations that enable scientific and technological design, develop, verify, certify, approve, test, measure and, more importantly, the facility ensures continuous operation for 24 hours a day, 365 days year. At the same time, the system is scalable so as to allow continuous adaptation of new technologies are developed and incorporated into the assembly to verify integration at the same time it checks the validity of their development. The transformation sector can be said to be the heart of the system, because without neglecting the other sectors, this should prove the validity of hydrogen as a carrier - energy storage are important efforts that have to do to demonstrate the suitability of fuel cells or internal combustion systems to realize the energy stored in hydrogen at prices competitive with conventional systems. The multiple roles to meet the fuel cells under different conditions of operation require to cover their operating conditions, many different sizes and applications. The fourth area focuses on integration is an essential complement within the installation. We must integrate not only the electricity produced, but also hydrogen is used and the heat generated in the process of using hydrogen energy. The energy management in its three forms: hydrogen chemical, electrical and thermal integration requires complicated and require a logic and artificial intelligence extremes to ensure maximum energy efficiency at the same time optimum utilization is achieved. Verification of the development and approval in the entire production system and, ultimately, as a demonstrator set to facilitate the simultaneous evolution of production technology, storage and distribution of hydrogen fuel cells has been assessed.
Resumo:
Global concerns over the effects of current carbon dioxide (CO2) emissions have lead to extensive research on the use of hydrogen as a potential energy carrier for a lower emissions society. Hydrogen can be produced from both fossil and renewable energy sources. The hydrogen economy, in which hydrogen will be a carrier of energy from renewable sources, is a long-term development and any increasing demand for hydrogen will probably be covered initially from fossil sources. Technologies for hydrogen generation from renewable energies are being explored, whereas technologies for hydrogen production from fossil fuels have to a certain extent reached maturity. This paper addresses the major hydrogen generation processes and utilisation technology (fuel cells) currently available for the move from a fossil fuelsbased economy to a hydrogen economy. In particular, it illustrates the applicability of different hydrogen sources using Australia as an example.
Resumo:
Australia is unique in terms of its geography, population distribution, and energy sources. It has an abundance of fossil fuel in the form of coal, natural gas, coal seam methane (CSM), oil, and a variety renewable energy sources that are under development. Unfortunately, most of the natural gas is located so far away from the main centres of population that it is more economic to ship the energy as LNG to neighboring countries. Electricity generation is the largest consumer of energy in Australia and accounts for around 50% of greenhouse gas emissions as 84% of electricity is produced from coal. Unless these emissions are curbed, there is a risk of increasing temperatures throughout the country and associated climatic instability. To address this, research is underway to develop coal gasification and processes for the capture and sequestration Of CO2. Alternative transport fuels such as biodiesel are being introduced to help reduce emissions from vehicles. The future role of hydrogen is being addressed in a national study commissioned this year by the federal government. Work at the University of Queensland is also addressing full-cycle analysis of hydrogen production, transport, storage, and utilization for both stationary and transport applications. There is a modest but growing amount of university research in fuel cells in Australia, and an increasing interest from industry. Ceramic Fuel Cells Ltd. (CFCL) has a leading position in planar solid oxide fuel cells (SOFCs) technology, which is being developed for a variety of applications, and next year Perth in Western Australia is hosting a trial of buses powered by proton-exchange fuel cells. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Most of the hydrogen production processes are designed for large-scale industrial uses and are not suitable for a compact hydrogen device to be used in systems like solid polymer fuel cells. Integrating the reaction step, the gas purification and the heat supply can lead to small-scale hydrogen production systems. The aim of this research is to study the influence of several reaction parameters on hydrogen production using liquid phase reforming of sugar solution over Pt, Pd, and Ni supported on nanostructured supports. It was found that the desired catalytic pathway for H-2 production involves cleavage of C-C, C-H and O-H bonds that adsorb on the catalyst surface. Thus a good catalyst for production of H2 by liquid-phase reforming must facilitate C-C bond cleavage and promote removal of adsorbed CO species by the water-gas shift reaction, but the catalyst must not facilitate C-O bond cleavage and hydrogenation of CO or CO2. Apart from studying various catalysts, a commercial Pt/gamma-alumina catalyst was used to study the effect of temperature at three different temperatures of 458, 473 and 493 K. Some of the spent catalysts were characterised using TGA, SEM and XRD to study coke deposition. The amorphous and organised form of coke was found on the surface of the catalyst. (C) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Photochemistry has made significant contributions to our understanding of many important natural processes as well as the scientific discoveries of the man-made world. The measurements from such studies are often complex and may require advanced data interpretation with the use of multivariate or chemometrics methods. In general, such methods have been applied successfully for data display, classification, multivariate curve resolution and prediction in analytical chemistry, environmental chemistry, engineering, medical research and industry. However, in photochemistry, by comparison, applications of such multivariate approaches were found to be less frequent although a variety of methods have been used, especially with spectroscopic photochemical applications. The methods include Principal Component Analysis (PCA; data display), Partial Least Squares (PLS; prediction), Artificial Neural Networks (ANN; prediction) and several models for multivariate curve resolution related to Parallel Factor Analysis (PARAFAC; decomposition of complex responses). Applications of such methods are discussed in this overview and typical examples include photodegradation of herbicides, prediction of antibiotics in human fluids (fluorescence spectroscopy), non-destructive in- and on-line monitoring (near infrared spectroscopy) and fast-time resolution of spectroscopic signals from photochemical reactions. It is also quite clear from the literature that the scope of spectroscopic photochemistry was enhanced by the application of chemometrics. To highlight and encourage further applications of chemometrics in photochemistry, several additional chemometrics approaches are discussed using data collected by the authors. The use of a PCA biplot is illustrated with an analysis of a matrix containing data on the performance of photocatalysts developed for water splitting and hydrogen production. In addition, the applications of the Multi-Criteria Decision Making (MCDM) ranking methods and Fuzzy Clustering are demonstrated with an analysis of water quality data matrix. Other examples of topics include the application of simultaneous kinetic spectroscopic methods for prediction of pesticides, and the use of response fingerprinting approach for classification of medicinal preparations. In general, the overview endeavours to emphasise the advantages of chemometrics' interpretation of multivariate photochemical data, and an Appendix of references and summaries of common and less usual chemometrics methods noted in this work, is provided. Crown Copyright © 2010.
Resumo:
Photocatalytic water splitting is a process which could potentially lead to commercially viable solar hydrogen production. This thesis uses an engineering perspective to investigate the technology. The effect of light intensity and temperature on photocatalytic water splitting was examined to evaluate the prospect of using solar concentration to increase the feasibility of the process. P25 TiO2 films deposited on conducting glass were used as photocatalyst electrodes and coupled with platinum electrodes which were also deposited on conducting glass. These films were used to form a photocatalysis cell and illuminated with a Xenon arc lamp to simulate solar light at intensities up to 50 suns. They were also tested at temperatures between 20°C and 100°C. The reaction demonstrated a sub-linear relationship with intensity. Photocurrent was proportional to intensity with an exponential value of 0.627. Increasing temperature resulted in an exponential relationship. This proved to follow an Arrhenius relationship with an activation energy of 10.3 kJ mol-1 and a pre-exponential factor of approximately 8.7×103. These results then formed the basis of a mathematical model which extrapolated beyond the range of the experimental tests. This model shows that the loss of efficiency from performing the reaction under high light intensity is offset by the increased reaction rate and efficiency from the associated temperature increase. This is an important finding for photocatalytic water splitting. It will direct future research in system design and materials research and may provide an avenue for the commercialisation of this technology.