965 resultados para human pathogenic bacteria
Resumo:
The present study was carried out in two different areas of Province of Cordoba, Argentina, where there was a suspicious of endemic mycosis. The previous data were the presence of a clinical case of pulmonary cryptococcosis in one area (Alta Gracia) and the previous findings of a high incidence of coccidioidin and cryptococcin reactors in the population of the second one (Villa Dolores). In both areas soil samples for fungi were studied and Cryptococcus neoformans was found in 2/25 samples from Alta Gracia. In Villa Dolores Coccidioides immitis was isolated in 2/40 samples, and C. neoformans in 1/40 samples. Delayed hypersensitivity test with cryptococcin was determined in the population from Alta Gracia and it was found to be 5.3%. Positive cutaneous tests with coccidioidin (33.8%) and cryptococcin (31.9%) in Villa Dolores were obtained. With these findings two endemic areas of systemic mycoses in Cordoba, Argentina were delimited.
Resumo:
The fecal contamination of raw seafood by indicators and opportunistic pathogenic microorganisms represents a public health concern. The objective of this study was to investigate the presence of enteric bacteria colonizing oysters collected from a Venezuelan touristic area. Oyster samples were collected at the northwestern coast of Venezuela and local salinity, pH, temperature, and dissolved oxygen of seawater were recorded. Total and fecal coliforms were measured for the assessment of the microbiological quality of water and oysters, using the Multiple Tube Fermentation technique. Analyses were made using cultures and 16S rRNA gene sequencing. Diverse enrichment and selective culture methods were used to isolate enteric bacteria. We obtained pure cultures of Gram-negative straight rods with fimbriae from Isognomon alatus and Crassostrea rhizophorae. Our results show that P. mirabilis was predominant under our culture conditions. We confirmed the identity of the cultures by biochemical tests, 16S rRNA gene sequencing, and data analysis. Other enterobacteria such as Escherichia coli, Morganella morganii and Klebsiella pneumoniae were also isolated from seawater and oysters. The presence of pathogenic bacteria in oysters could have serious epidemiological implications and a potential human health risk associated with consumption of raw seafood.
Resumo:
Dissertação de mestrado em Bioengenharia
Resumo:
Dissertação de mestrado em Bioengenharia
Resumo:
Increasingly the development of novel therapeutic strategies is taking into consideration the contribution of the intestinal microbiota to health and disease. Dysbiosis of the microbial communities colonizing the human intestinal tract has been described for a variety of chronic diseases, such as inflammatory bowel disease, obesity and asthma. In particular, reduction of several so-called probiotic species including Lactobacilli and Bifidobacteria that are generally considered to be beneficial, as well as an outgrowth of potentially pathogenic bacteria is often reported. Thus a tempting therapeutic approach is to shape the constituents of the microbiota in an attempt to restore the microbial balance towards the growth of 'health-promoting' bacterial species. A twist to this scenario is the recent discovery that the respiratory tract also harbors a microbiota under steady-state conditions. Investigators have shown that the microbial composition of the airway flora is different between healthy lungs and those with chronic lung diseases, such as asthma, chronic obstructive pulmonary disease as well as cystic fibrosis. This is an emerging field, and thus far there is very limited data showing a direct contribution of the airway microbiota to the onset and progression of disease. However, should future studies provide such evidence, the airway microbiota might soon join the intestinal microbiota as a target for therapeutic intervention. In this review, we highlight the major advances that have been made describing the microbiota in chronic lung disease and discuss current and future approaches concerning manipulation of the microbiota for the treatment and prevention of disease.
Resumo:
The amino acid cysteine has long been known to be toxic at elevated levels for bacteria, fungi, and humans. However, mechanisms of cysteine tolerance in microbes remain largely obscure. Here we show that the human pathogenic yeast Candida albicans excretes sulfite when confronted with increasing cysteine concentrations. Mutant construction and phenotypic analysis revealed that sulfite formation from cysteine in C. albicans relies on cysteine dioxygenase Cdg1, an enzyme with similar functions in humans. Environmental cysteine induced not only the expression of the CDG1 gene in C. albicans, but also the expression of SSU1, encoding a putative sulfite efflux pump. Accordingly, the deletion of SSU1 resulted in enhanced sensitivity of the fungal cells to both cysteine and sulfite. To study the regulation of sulfite/cysteine tolerance in more detail, we screened a C. albicans library of transcription factor mutants in the presence of sulfite. This approach and subsequent independent mutant analysis identified the zinc cluster transcription factor Zcf2 to govern sulfite/cysteine tolerance, as well as cysteine-inducible SSU1 and CDG1 gene expression. cdg1Δ and ssu1Δ mutants displayed reduced hypha formation in the presence of cysteine, indicating a possible role of the newly proposed mechanisms of cysteine tolerance and sulfite secretion in the pathogenicity of C. albicans. Moreover, cdg1Δ mutants induced delayed mortality in a mouse model of disseminated infection. Since sulfite is toxic and a potent reducing agent, its production by C. albicans suggests diverse roles during host adaptation and pathogenicity.
Resumo:
This study characterized the fecal indicator bacteria (FIB), including Escherichia coli (E. coli) and Enteroccocus (ENT), disseminated over time in the Bay of Vidy, which is the most contaminated area of Lake Geneva. Sediments were collected from a site located at similar to 500 m from the present waste water treatment plant (WWTP) outlet pipe, in front of the former WWTP outlet pipe, which was located at only 300 m from the coastal recreational area (before 2001). E. coil and ENT were enumerated in sediment suspension using the membrane filter method. The FIB characterization was performed for human Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium) and human specific bacteroides by PCR using specific primers and a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Bacterial cultures revealed that maximum values of 35.2 x 10(8) and 6.6 x 10(6) CFU g(-1) dry sediment for E. coil and ENT, respectively, were found in the sediments deposited following eutrophication of Lake Geneva in the 1970s. whereas the WWTP started operating in 1964. The same tendency was observed for the presence of human fecal pollution: the percentage of PCR amplification with primers ESP-1/ESP-2 for E. faecalis and E. faecium indicated that more than 90% of these bacteria were from human origin. Interestingly, the PCR assays for specific-human bacteroides HF183/HF134 were positive for DNA extracted from all isolated strains of sediment surrounding WWPT outlet pipe discharge. The MALDI-TOF MS confirmed the presence of general E. coli and predominance E. faecium in isolated strains. Our results demonstrated that human fecal bacteria highly increased in the sediments contaminated with WWTP effluent following the eutrophication of Lake Geneva. Additionally, other FIB cultivable strains from animals or adapted environmental strains were detected in the sediment of the bay. The approaches used in this research are valuable to assess the temporal distribution and the source of the human fecal pollution in aquatic environments. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Report for the scientific sojourn carried out at the l’ Institute for Computational Molecular Science of the Temple University, United States, from 2010 to 2012. Two-component systems (TCS) are used by pathogenic bacteria to sense the environment within a host and activate mechanisms related to virulence and antimicrobial resistance. A prototypical example is the PhoQ/PhoP system, which is the major regulator of virulence in Salmonella. Hence, PhoQ is an attractive target for the design of new antibiotics against foodborne diseases. Inhibition of the PhoQ-mediated bacterial virulence does not result in growth inhibition, presenting less selective pressure for the generation of antibiotic resistance. Moreover, PhoQ is a histidine kinase (HK) and it is absent in animals. Nevertheless, the design of satisfactory HK inhibitors has been proven to be a challenge. To compete with the intracellular ATP concentrations, the affinity of a HK inhibidor must be in the micromolar-nanomolar range, whereas the current lead compounds have at best millimolar affinities. Moreover, the drug selectivity depends on the conformation of a highly variable loop, referred to as the “ATP-lid, which is difficult to study by X-Ray crystallography due to its flexibility. I have investigated the binding of different HK inhibitors to PhoQ. In particular, all-atom molecular dynamics simulations have been combined with enhanced sampling techniques in order to provide structural and dynamic information of the conformation of the ATP-lid. Transient interactions between these drugs and the ATP-lid have been identified and the free energy of the different binding modes has been estimated. The results obtained pinpoint the importance of protein flexibility in the HK-inhibitor binding, and constitute a first step in developing more potent and selective drugs. The computational resources of the hosting institution as well as the experience of the members of the group in drug binding and free energy methods have been crucial to carry out this work.
Resumo:
Dermatophytes cause the majority of superficial mycoses in humans and animals. However, little is known about the pathogenicity of this specialized group of filamentous fungi, for which molecular research has been limited thus far. During experimental infection of guinea pigs by the human pathogenic dermatophyte Arthroderma benhamiae, we recently detected the activation of the fungal gene encoding malate synthase AcuE, a key enzyme of the glyoxylate cycle. By the establishment of the first genetic system for A. benhamiae, specific ΔacuE mutants were constructed in a wild-type strain and, in addition, in a derivative in which we inactivated the nonhomologous end-joining pathway by deletion of the A. benhamiae KU70 gene. The absence of AbenKU70 resulted in an increased frequency of the targeted insertion of linear DNA by homologous recombination, without notably altering the monitored in vitro growth abilities of the fungus or its virulence in a guinea pig infection model. Phenotypic analyses of ΔacuE mutants and complemented strains depicted that malate synthase is required for the growth of A. benhamiae on lipids, major constituents of the skin. However, mutant analysis did not reveal a pathogenic role of the A. benhamiae enzyme in guinea pig dermatophytosis or during epidermal invasion of the fungus in an in vitro model of reconstituted human epidermis. The presented efficient system for targeted genetic manipulation in A. benhamiae, paired with the analyzed infection models, will advance the functional characterization of putative virulence determinants in medically important dermatophytes.
Resumo:
Vibrio vulnificus and Vibrio cholerae are Gram-negative pathogens that cause serious infectious disease in humans. The beta form of pro-IL-1 is thought to be involved in inflammatory responses and disease development during infection with these pathogens, but the mechanism of beta form of pro-IL-1 production remains poorly defined. In this study, we demonstrate that infection of mouse macrophages with two pathogenic Vibrio triggers the activation of caspase-1 via the NLRP3 inflammasome. Activation of the NLRP3 inflammasome was mediated by hemolysins and multifunctional repeat-in-toxins produced by the pathogenic bacteria. NLRP3 activation in response to V. vulnificus infection required NF-kappaB activation, which was mediated via TLR signaling. V. cholerae-induced NLRP3 activation also required NF-kappaB activation but was independent of TLR stimulation. Studies with purified V. cholerae hemolysin revealed that toxin-stimulated NLRP3 activation was induced by TLR and nucleotide-binding oligomerization domain 1/2 ligand-mediated NF-kappaB activation. Our results identify the NLRP3 inflammasome as a sensor of Vibrio infections through the action of bacterial cytotoxins and differential activation of innate signaling pathways acting upstream of NF-kappaB.
Resumo:
Carbohydrates are considered as promising templates for the display of multiple copies of antimicrobial peptides. Herein, wedescribe the design and synthesis of chimeric structures containing two or four copies of the antimicrobial peptidesKKLFKKILKYL-NH2 (BP100) and KKLfKKILKYL-NH2 (BP143) attached to the carbohydrate template cyclodithioerythritol(cDTE) or α-D-galactopyranoside (Galp). The synthesis involved the preparation of the corresponding peptide aldehyde followedby coupling to an aminooxy-functionalized carbohydrate template. After purification, the multivalent display systems were obtainedin high purities (90–98%) and in good yields (42–64%). These compounds were tested against plant and human pathogenic bacteriaand screened for their cytotoxicity on eukaryotic cells. They showed lower MIC values than the parent peptides against the bacteriaanalyzed. In particular, the carbopeptides derived from cDTE and Galp, which contained two or four copies of BP100, respectively,were 2- to 8-fold more active than the monomeric peptide against the phytopathogenic bacteria. These results suggest thatpreassembling antimicrobial peptides to multimeric structures is not always associated with a significant improvement of theactivity. In contrast, the carbopeptides synthesized were active against human red blood cells pointing out that peptide preassemblyis critical for the hemolytic activity. Notably, peptide preassembly resulted in an enhanced bactericidal effect
Resumo:
Medical implants, like cardiovascular devices, improve the quality of life for countless individuals but may become infected with bacteria like Staphylococcus aureus. Such infections take the form of a biofilm, a structured community of bacterial cells adherent to the surface of a solid substrate. Every biofilm begins with an attractive force or bond between bacterium and substratum. We used atomic force microscopy to probe experimentally forces between a fibronectin-coated surface (i.e., proxy for an implanted cardiac device) and fibronectin-binding receptors on the surface of individual living bacteria from each of 80 clinical isolates of S. aureus. These isolates originated from humans with infected cardiac devices (CDI; n = 26), uninfected cardiac devices (n = 20), and the anterior nares of asymptomatic subjects (n = 34). CDI isolates exhibited a distinct binding-force signature and had specific single amino acid polymorphisms in fibronectin-binding protein A corresponding to E652D, H782Q, and K786N. In silico molecular dynamics simulations demonstrate that residues D652, Q782, and N786 in fibronectin-binding protein A form extra hydrogen bonds with fibronectin, complementing the higher binding force and energy measured by atomic force microscopy for the CDI isolates. This study is significant, because it links pathogenic bacteria biofilms from the length scale of bonds acting across a nanometer-scale space to the clinical presentation of disease at the human dimension.
Resumo:
During the genomic era, a large amount of whole-genome sequences accumulated, which identified many hypothetical proteins of unknown function. Rapidly, functional genomics, which is the research domain that assign a function to a given gene product, has thus been developed. Functional genomics of intracellular pathogenic bacteria exhibit specific peculiarities due to the fastidious growth of most of these intracellular micro-organisms, due to the close interaction with the host cell, due to the risk of contamination of experiments with host cell proteins and, for some strict intracellular bacteria such as Chlamydia, due to the absence of simple genetic system to manipulate the bacterial genome. To identify virulence factors of intracellular pathogenic bacteria, functional genomics often rely on bioinformatic analyses compared with model organisms such as Escherichia coli and Bacillus subtilis. The use of heterologous expression is another common approach. Given the intracellular lifestyle and the many effectors that are used by the intracellular bacteria to corrupt host cell functions, functional genomics is also often targeting the identification of new effectors such as those of the T4SS of Brucella and Legionella.
Resumo:
Although dermatophytes are the most common agents of superficial mycoses in humans and animals, the molecular basis of the pathogenicity of these fungi is largely unknown. In vitro digestion of keratin by dermatophytes is associated with the secretion of multiple proteases, which are assumed to be responsible for their particular specialization to colonize and degrade keratinized host structures during infection. To investigate the role of individual secreted proteases in dermatophytosis, a guinea pig infection model was established for the zoophilic dermatophyte Arthroderma benhamiae, which causes highly inflammatory cutaneous infections in humans and rodents. By use of a cDNA microarray covering approximately 20-25 % of the A. benhamiae genome and containing sequences of at least 23 protease genes, we revealed a distinct in vivo protease gene expression profile in the fungal cells, which was surprisingly different from the pattern elicited during in vitro growth on keratin. Instead of the major in vitro -expressed proteases, others were activated specifically during infection. These enzymes are therefore suggested to fulfil important functions that are not exclusively associated with the degradation of keratin. Most notably, the gene encoding the serine protease subtilisin 6, which is a known major allergen in the related dermatophyte Trichophyton rubrum and putatively linked to host inflammation, was found to be the most strongly upregulated gene during infection. In addition, our approach identified other candidate pathogenicity-related factors in A. benhamiae, such as genes encoding key enzymes of the glyoxylate cycle and an opsin-related protein. Our work provides what we believe to be the first broad-scale gene expression profile in human pathogenic dermatophytes during infection, and points to putative virulence-associated mechanisms that make these micro-organisms the most successful aetiological agents of superficial mycoses.
Resumo:
Plesiomonas shigelloides, the only species of the genus, is an emergent pathogenic bacterium associated with human diarrheal and extraintestinal disease. We present the whole-genome sequence analysis of the representative strain for the O1 serotype (strain 302-73), providing a tool for studying bacterial outbreaks, virulence factors, and accurate diagnostic methods.