901 resultados para human identification


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The elevated levels of beta1,4-galactosyltransferase I (GalT I; EC 2.4.1.38) are detected in highly metastatic lung cancer PGBE1 cells compared with its less metastatic partner PGLH7 cells. Decreasing the GalT I surface expression by small interfering RNA or interfering with the surface of GalT I function by mutation inhibited cell adhesion on laminin, the invasive potential in vitro, and tyrosine phosphorylation of focal adhesion kinase. The mechanism by which GalT I activity is up-regulated in highly metastatic cells remains unclear. To investigate the regulation of GalT I expression, we cloned the 5'-region flanking the transcription start point of the GalT I gene (-1653 to +52). Cotransfection of the GalT I promoter/luciferase reporter and the Ets family protein E1AF expression plasmid increased the luciferase reporter activity in a dose-dependent manner. By deletion and mutation analyses, we identified an Ets-binding site between nucleotides -205 and -200 in the GalT I promoter that was critical for responsiveness to E1AF. It was identified that E1AF could bind to and activate the GalT I promoter by electrophoretic mobility shift assay in PGLH7 cells and COS1 cells. A stronger affinity of E1AF for DNA has contributed to the elevated expression of GalT I in PGBE1 cells. Stable transfection of the E1AF expression plasmid resulted in increased GalT I expression in PGLH7 cells, and stable transfectants migrated faster than control cells. Meanwhile, the content of the beta1,4-Gal branch on the cell surface was increased in stably transfected PGLH7 cells. GalT I expression can also be induced by epidermal growth factor and dominant active Ras, JNK1, and ERK1. These data suggest an essential role for E1AF in the activation of the human GalT I gene in highly metastatic lung cancer cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A radioiodinated ligand, [125I]SB-236636 [(S)-(-)3-[4-[2-[N-(2-benzoxazolyl)-N-methylamino]ethoxy]3-[125I]iodophenyl]2-ethoxy propanoic acid], which is specific for the ? isoform of the peroxisomal proliferator activated receptor (PPAR?), was developed. [125I]SB-236636 binds with high affinity to full-length human recombinant PPAR?1 and to a GST (glutathione S-transferase) fusion protein contg. the ligand binding domain of human PPAR?1 (KD = 70 nM). Using this ligand, the authors characterized binding sites in adipose-derived cells from rat, mouse and humans. In competition expts., rosiglitazone (BRL-49653), a potent antihyperglycemic agent, binds with high affinity to sites in intact adipocytes (IC50 = 12, 4 and 9 nM for rat, 3T3-L1 and human adipocytes, resp.). Binding affinities (IC50) of other thiazolidinediones for the ligand binding domain of PPAR?1 were comparable with those detd. in adipocytes and reflected the rank order of potencies of these agents as stimulants of glucose transport in 3T3-L1 adipocytes and antihyperglycemic agents in vivo: rosiglitazone > pioglitazone > troglitazone. Competition of [125I]SB-236636 binding was stereoselective in that the IC50 value of SB-219994, the (S)-enantiomer of an ?-trifluoroethoxy propanoic acid insulin sensitizer, was 770-fold lower than that of SB-219993 [(R)-enantiomer] at recombinant human PPAR?1. The higher binding affinity of SB-219994 also was evident in intact adipocytes and reflected its 100-fold greater potency as an antidiabetic agent. The results strongly suggest that the high-affinity binding site for [125I]SB-236636 in intact adipocytes is PPAR? and that the pharmacol. of insulin-sensitizer binding in rodent and human adipocytes is very similar and, moreover, predictive of antihyperglycemic activity in vivo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have analyzed the adhesion of human and murine platelets, and of recombinant human and murine GpVI ectodomains, to synthetic triple-helical collagen-like peptides. These included 57 peptides derived from the sequence of human type III collagen and 9 peptides derived from the cyanogen bromide fragment of bovine type III collagen, alpha 1(III)CB4. We have identified several peptides that interact with GpVI, in particular a peptide designated III-30 with the sequence GAOGLRGGAGPOG-PEGGKGAAGPOGPO. Both human and murine platelets bound to peptide III-30 in a GpVI-dependent manner. III-30 also supported binding of recombinant GpVI ectodomains. Cross-linked III-30 induced aggregation of human and murine platelets, although with a lower potency than collagen-related peptide. Modifications of the peptide sequence indicated that the hydroxyproline residues play a significant role in supporting its GpVI reactivity. However, many peptides containing OGP/ GPO motifs did not support adhesion to GpVI. These data indicate that the ability of a triple-helical peptide to bind GpVI is not solely determined by the presence or spatial arrangement of these OGP/GPO motifs within the peptides.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Members of the Burkholderia cepacia complex can secrete proteases, lipases, and hemolysins. We report in this study the identification of a general secretory pathway present in a B. vietnamiensis (formerly genomovar V) clinical isolate, which is required for the efficient secretion of phospholipase C and hemolysin activities. Southern blot hybridization experiments revealed that this general secretion pathway is highly conserved among the different genomovars of the B. cepacia complex and is homologous to a similar system described in B. pseudomallei. We also show that this pathway appears not to be necessary for intracellular survival of B. vietnamiensis within Acanthamoeba polyphaga.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an opportunistic pathogen threatening patients with cystic fibrosis. Flagella are required for biofilm formation, as well as adhesion to and invasion of epithelial cells. Recognition of flagellin via the Toll-like receptor 5 (TLR5) contributes to exacerbate B. cenocepacia-induced lung epithelial inflammatory responses. In this study, we report that B. cenocepacia flagellin is glycosylated on at least 10 different sites with a single sugar, 4,6-dideoxy-4-(3-hydroxybutanoylamino)-d-glucose. We have identified key genes that are required for flagellin glycosylation, including a predicted glycosyltransferase gene that is linked to the flagellin biosynthesis cluster and a putative acetyltransferase gene located within the O-antigen lipopolysaccharide cluster. Another O-antigen cluster gene, rmlB, which is required for flagellin glycan and O-antigen biosynthesis, was essential for bacterial viability, uncovering a novel target against Burkholderia infections. Using glycosylated and nonglycosylated purified flagellin and a cell reporter system to assess TLR5-mediated responses, we also show that the presence of glycan in flagellin significantly impairs the inflammatory response of epithelial cells. We therefore suggest that flagellin glycosylation reduces recognition of flagellin by host TLR5, providing an evasive strategy to infecting bacteria.