913 resultados para homogeneous Markov chain
Resumo:
This paper considers antenna selection (AS) at a receiver equipped with multiple antenna elements but only a single radio frequency chain for packet reception. As information about the channel state is acquired using training symbols (pilots), the receiver makes its AS decisions based on noisy channel estimates. Additional information that can be exploited for AS includes the time-correlation of the wireless channel and the results of the link-layer error checks upon receiving the data packets. In this scenario, the task of the receiver is to sequentially select (a) the pilot symbol allocation, i.e., how to distribute the available pilot symbols among the antenna elements, for channel estimation on each of the receive antennas; and (b) the antenna to be used for data packet reception. The goal is to maximize the expected throughput, based on the past history of allocation and selection decisions, and the corresponding noisy channel estimates and error check results. Since the channel state is only partially observed through the noisy pilots and the error checks, the joint problem of pilot allocation and AS is modeled as a partially observed Markov decision process (POMDP). The solution to the POMDP yields the policy that maximizes the long-term expected throughput. Using the Finite State Markov Chain (FSMC) model for the wireless channel, the performance of the POMDP solution is compared with that of other existing schemes, and it is illustrated through numerical evaluation that the POMDP solution significantly outperforms them.
Resumo:
Multi temporal land use information were derived using two decades remote sensing data and simulated for 2012 and 2020 with Cellular Automata (CA) considering scenarios, change probabilities (through Markov chain) and Multi Criteria Evaluation (MCE). Agents and constraints were considered for modeling the urbanization process. Agents were nornmlized through fiizzyfication and priority weights were assigned through Analytical Hierarchical Process (AHP) pairwise comparison for each factor (in MCE) to derive behavior-oriented rules of transition for each land use class. Simulation shows a good agreement with the classified data. Fuzzy and AHP helped in analyzing the effects of agents of growth clearly and CA-Markov proved as a powerful tool in modelling and helped in capturing and visualizing the spatiotemporal patterns of urbanization. This provided rapid land evaluation framework with the essential insights of the urban trajectory for effective sustainable city planning.
Resumo:
We develop a general theory of Markov chains realizable as random walks on R-trivial monoids. It provides explicit and simple formulas for the eigenvalues of the transition matrix, for multiplicities of the eigenvalues via Mobius inversion along a lattice, a condition for diagonalizability of the transition matrix and some techniques for bounding the mixing time. In addition, we discuss several examples, such as Toom-Tsetlin models, an exchange walk for finite Coxeter groups, as well as examples previously studied by the authors, such as nonabelian sandpile models and the promotion Markov chain on posets. Many of these examples can be viewed as random walks on quotients of free tree monoids, a new class of monoids whose combinatorics we develop.
Resumo:
In this article, we study risk-sensitive control problem with controlled continuous time Markov chain state dynamics. Using multiplicative dynamic programming principle along with the atomic structure of the state dynamics, we prove the existence and a characterization of optimal risk-sensitive control under geometric ergodicity of the state dynamics along with a smallness condition on the running cost.
Resumo:
This work addresses the problem of estimating the optimal value function in a Markov Decision Process from observed state-action pairs. We adopt a Bayesian approach to inference, which allows both the model to be estimated and predictions about actions to be made in a unified framework, providing a principled approach to mimicry of a controller on the basis of observed data. A new Markov chain Monte Carlo (MCMC) sampler is devised for simulation from theposterior distribution over the optimal value function. This step includes a parameter expansion step, which is shown to be essential for good convergence properties of the MCMC sampler. As an illustration, the method is applied to learning a human controller.
Resumo:
O presente trabalho apresenta um estudo referente à aplicação da abordagem Bayesiana como técnica de solução do problema inverso de identificação de danos estruturais, onde a integridade da estrutura é continuamente descrita por um parâmetro estrutural denominado parâmetro de coesão. A estrutura escolhida para análise é uma viga simplesmente apoiada do tipo Euler-Bernoulli. A identificação de danos é baseada em alterações na resposta impulsiva da estrutura, provocadas pela presença dos mesmos. O problema direto é resolvido através do Método de Elementos Finitos (MEF), que, por sua vez, é parametrizado pelo parâmetro de coesão da estrutura. O problema de identificação de danos é formulado como um problema inverso, cuja solução, do ponto de vista Bayesiano, é uma distribuição de probabilidade a posteriori para cada parâmetro de coesão da estrutura, obtida utilizando-se a metodologia de amostragem de Monte Carlo com Cadeia de Markov. As incertezas inerentes aos dados medidos serão contempladas na função de verossimilhança. Três estratégias de solução são apresentadas. Na Estratégia 1, os parâmetros de coesão da estrutura são amostrados de funções densidade de probabilidade a posteriori que possuem o mesmo desvio padrão. Na Estratégia 2, após uma análise prévia do processo de identificação de danos, determina-se regiões da viga potencialmente danificadas e os parâmetros de coesão associados à essas regiões são amostrados a partir de funções de densidade de probabilidade a posteriori que possuem desvios diferenciados. Na Estratégia 3, após uma análise prévia do processo de identificação de danos, apenas os parâmetros associados às regiões identificadas como potencialmente danificadas são atualizados. Um conjunto de resultados numéricos é apresentado levando-se em consideração diferentes níveis de ruído para as três estratégias de solução apresentadas.
Resumo:
Conventional Hidden Markov models generally consist of a Markov chain observed through a linear map corrupted by additive noise. This general class of model has enjoyed a huge and diverse range of applications, for example, speech processing, biomedical signal processing and more recently quantitative finance. However, a lesser known extension of this general class of model is the so-called Factorial Hidden Markov Model (FHMM). FHMMs also have diverse applications, notably in machine learning, artificial intelligence and speech recognition [13, 17]. FHMMs extend the usual class of HMMs, by supposing the partially observed state process is a finite collection of distinct Markov chains, either statistically independent or dependent. There is also considerable current activity in applying collections of partially observed Markov chains to complex action recognition problems, see, for example, [6]. In this article we consider the Maximum Likelihood (ML) parameter estimation problem for FHMMs. Much of the extant literature concerning this problem presents parameter estimation schemes based on full data log-likelihood EM algorithms. This approach can be slow to converge and often imposes heavy demands on computer memory. The latter point is particularly relevant for the class of FHMMs where state space dimensions are relatively large. The contribution in this article is to develop new recursive formulae for a filter-based EM algorithm that can be implemented online. Our new formulae are equivalent ML estimators, however, these formulae are purely recursive and so, significantly reduce numerical complexity and memory requirements. A computer simulation is included to demonstrate the performance of our results. © Taylor & Francis Group, LLC.
Resumo:
We consider the inverse reinforcement learning problem, that is, the problem of learning from, and then predicting or mimicking a controller based on state/action data. We propose a statistical model for such data, derived from the structure of a Markov decision process. Adopting a Bayesian approach to inference, we show how latent variables of the model can be estimated, and how predictions about actions can be made, in a unified framework. A new Markov chain Monte Carlo (MCMC) sampler is devised for simulation from the posterior distribution. This step includes a parameter expansion step, which is shown to be essential for good convergence properties of the MCMC sampler. As an illustration, the method is applied to learning a human controller.
Resumo:
Mark Pagel, Andrew Meade (2004). A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data. Systematic Biology, 53(4), 571-581. RAE2008
Resumo:
The problems encountered when using traditional rectangular pulse hierarchical point processmodels for fine temporal resolution and the growing number of available tip-time records suggest that rainfall increments from tipping-bucket gauges be modelled directly. Poisson processes are used with an arrival rate modulated by a Markov chain in Continuous time. The paper shows how, by using two or three states for this chain, much of the structure of the rainfall intensity distribution and the wet/dry sequences can be represented for time-scales as small as 5 minutes.
Resumo:
We describe a general likelihood-based 'mixture model' for inferring phylogenetic trees from gene-sequence or other character-state data. The model accommodates cases in which different sites in the alignment evolve in qualitatively distinct ways, but does not require prior knowledge of these patterns or partitioning of the data. We call this qualitative variability in the pattern of evolution across sites "pattern-heterogeneity" to distinguish it from both a homogenous process of evolution and from one characterized principally by differences in rates of evolution. We present studies to show that the model correctly retrieves the signals of pattern-heterogeneity from simulated gene-sequence data, and we apply the method to protein-coding genes and to a ribosomal 12S data set. The mixture model outperforms conventional partitioning in both these data sets. We implement the mixture model such that it can simultaneously detect rate- and pattern-heterogeneity. The model simplifies to a homogeneous model or a rate- variability model as special cases, and therefore always performs at least as well as these two approaches, and often considerably improves upon them. We make the model available within a Bayesian Markov-chain Monte Carlo framework for phylogenetic inference, as an easy-to-use computer program.
Resumo:
Undirected graphical models are widely used in statistics, physics and machine vision. However Bayesian parameter estimation for undirected models is extremely challenging, since evaluation of the posterior typically involves the calculation of an intractable normalising constant. This problem has received much attention, but very little of this has focussed on the important practical case where the data consists of noisy or incomplete observations of the underlying hidden structure. This paper specifically addresses this problem, comparing two alternative methodologies. In the first of these approaches particle Markov chain Monte Carlo (Andrieu et al., 2010) is used to efficiently explore the parameter space, combined with the exchange algorithm (Murray et al., 2006) for avoiding the calculation of the intractable normalising constant (a proof showing that this combination targets the correct distribution in found in a supplementary appendix online). This approach is compared with approximate Bayesian computation (Pritchard et al., 1999). Applications to estimating the parameters of Ising models and exponential random graphs from noisy data are presented. Each algorithm used in the paper targets an approximation to the true posterior due to the use of MCMC to simulate from the latent graphical model, in lieu of being able to do this exactly in general. The supplementary appendix also describes the nature of the resulting approximation.
Resumo:
Monte Carlo algorithms often aim to draw from a distribution π by simulating a Markov chain with transition kernel P such that π is invariant under P. However, there are many situations for which it is impractical or impossible to draw from the transition kernel P. For instance, this is the case with massive datasets, where is it prohibitively expensive to calculate the likelihood and is also the case for intractable likelihood models arising from, for example, Gibbs random fields, such as those found in spatial statistics and network analysis. A natural approach in these cases is to replace P by an approximation Pˆ. Using theory from the stability of Markov chains we explore a variety of situations where it is possible to quantify how ’close’ the chain given by the transition kernel Pˆ is to the chain given by P . We apply these results to several examples from spatial statistics and network analysis.
Resumo:
Stellar differential rotation is an important key to understand hydromagnetic stellar dynamos, instabilities, and transport processes in stellar interiors as well as for a better treatment of tides in close binary and star-planet systems. The space-borne high-precision photometry with MOST, CoRoT, and Kepler has provided large and homogeneous datasets. This allows, for the first time, the study of differential rotation statistically robust samples covering almost all stages of stellar evolution. In this sense, we introduce a method to measure a lower limit to the amplitude of surface differential rotation from high-precision evenly sampled photometric time series such as those obtained by space-borne telescopes. It is designed for application to main-sequence late-type stars whose optical flux modulation is dominated by starspots. An autocorrelation of the time series is used to select stars that allow an accurate determination of spot rotation periods. A simple two-spot model is applied together with a Bayesian Information Criterion to preliminarily select intervals of the time series showing evidence of differential rotation with starspots of almost constant area. Finally, the significance of the differential rotation detection and a measurement of its amplitude and uncertainty are obtained by an a posteriori Bayesian analysis based on a Monte Carlo Markov Chain (hereafter MCMC) approach. We apply our method to the Sun and eight other stars for which previous spot modelling has been performed to compare our results with previous ones. The selected stars are of spectral type F, G and K. Among the main results of this work, We find that autocorrelation is a simple method for selecting stars with a coherent rotational signal that is a prerequisite to a successful measurement of differential rotation through spot modelling. For a proper MCMC analysis, it is necessary to take into account the strong correlations among different parameters that exists in spot modelling. For the planethosting star Kepler-30, we derive a lower limit to the relative amplitude of the differential rotation. We confirm that the Sun as a star in the optical passband is not suitable for a measurement of the differential rotation owing to the rapid evolution of its photospheric active regions. In general, our method performs well in comparison with more sophisticated procedures used until now in the study of stellar differential rotation
Resumo:
Social behavior of Guiana dolphins, Sotalia guianensis, at Pipa Beach, RN, Brazil: dynamics, sequence, breathing synchrony, and responses to dolphin watching. Social animals form groups that can range from temporary to permanent. Depending on the nature of the social relationships developed between individuals, groups present a particular social organization and the effect of these interactions shapes the activity patterns of these animals. This study investigates: (i) fission-fusion dynamics of Guiana dolphins, through the analysis of three dimensions of the social system (variation in spatial cohesion, variation in size and composition of groups), (ii) sequence, routine and behavioral stability, (iii) breathing intervals in synchronized groups and (iv) behavioral responses of the animals to dolphin watching. Systematic observations of Guiana dolphins were made from a platform located in cliffs about 25 m above sea level that surround Madeiro Bay, Pipa Beach. Sampling occurred from December 2007 to February 2009 between 0600 h and 1600 h, and the groups of Guiana dolphins were investigated according to their size (alone and group) and composition (adults, adults and juveniles, and adults and calves). According to the analysis of fission-fusion dynamics, Guiana dolphin groups frequently changed their composition, modifying their patterns of spatial grouping and cohesion every 20 minutes on average. More than 50% of the individuals maintained a distance of up to 2 m from other group members and new individuals were attracted to the group, especially during feeding, leaving it for foraging. Large groups were more unstable than small, while groups containing only adults were more stable than groups of adults and juveniles. According to the Z-score analysis to investigate the sequence and behavioral routine, lone individuals were more ! .7! ! involved in foraging and feeding, while resting was more common in groups. Foraging and feeding were more common in homogeneous groups (individuals of the same age class), while heterogeneous groups (different age classes) were often involved in socialization, displaying a broader behavioral repertoire. Foraging and resting behavior presented higher stability (continuous duration in minutes) than the other behaviors. The analysis of breathing intervals in synchronized groups showed significant differences depending on type of behavior, composition and area preference. During resting, breathing intervals were of longer duration, and groups with calves showed shorter breathing intervals than groups without calves. Lone individuals also preferred areas called corral , often used for the entrapment of fishes. The Markov chain analysis revealed behavioral changes in the presence of boats, according to the type of group composition. Groups composed of adults presented decreased resting and increased in traveling during the presence of boats. Groups of adults and juveniles showed a massive reduction of socialization, while the behavior transition probability traveling-traveling was higher in groups of adults and calves. In the presence of the boats, stability of resting was reduced by one third of its original duration and traveling more than doubled. The behavioral patterns analyzed are discussed in light of socio-ecological models concerning costs and benefits of proximity between individuals and behavioral optimization. Furthermore, significant changes in behavioral patterns indicate that Guiana dolphins, at Pipa Beach, have suffered the effects of tourism as a result of violation of rules of conduct established for the study area