982 resultados para histone H3 acetylation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Biofísica Molecular - IBILCE

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chk1 both arrests replication forks and enhances repair of DNA damage by phosphorylating downstream effectors. Although there has been a concerted effort to identify effectors of Chk1 activity, underlying mechanisms of effector action are still being identified. Metnase (also called SETMAR) is a SET and transposase domain protein that promotes both DNA double-strand break (DSB) repair and restart of stalled replication forks. In this study, we show that Metnase is phosphorylated only on Ser495 (S495) in vivo in response to DNA damage by ionizing radiation. Chk1 is the major mediator of this phosphorylation event. We had previously shown that wild-type (wt) Metnase associates with chromatin near DSBs and methylates histone H3 Lys36. Here we show that a Ser495Ala (S495A) Metnase mutant, which is not phosphorylated by Chk1, is defective in DSB-induced chromatin association. The S495A mutant also fails to enhance repair of an induced DSB when compared with wt Metnase. Interestingly, the S495A mutant demonstrated increased restart of stalled replication forks compared with wt Metnase. Thus, phosphorylation of Metnase S495 differentiates between these two functions, enhancing DSB repair and repressing replication fork restart. In summary, these data lend insight into the mechanism by which Chk1 enhances repair of DNA damage while at the same time repressing stalled replication fork restart. Oncogene (2012) 31, 4245-4254; doi:10.1038/onc.2011.586; published online 9 January 2012

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The IkappaB kinase (IKK) complex controls processes such as inflammation, immune responses, cell survival and the proliferation of both normal and tumor cells. By activating NFkappaB, the IKK complex contributes to G1/S transition and first evidence has been presented that IKKalpha also regulates entry into mitosis. At what stage IKK is required and whether IKK also contributes to progression through mitosis and cytokinesis, however, has not yet been determined. In this study, we use BMS-345541, a potent allosteric small molecule inhibitor of IKK, to inhibit IKK specifically during G2 and during mitosis. We show that BMS-345541 affects several mitotic cell cycle transitions, including mitotic entry, prometaphase to anaphase progression and cytokinesis. Adding BMS-345541 to the cells released from arrest in S-phase blocked the activation of Aurora A, B and C, Cdk1 activation and histone H3 phosphorylation. Additionally, treatment of the mitotic cells with BMS-345541 resulted in precocious cyclin B1 and securin degradation, defective chromosome separation and improper cytokinesis. BMS-345541 was also found to override the spindle checkpoint in nocodazole-arrested cells. In vitro kinase assays using BMS-345541 indicate that these effects are not primarily due to a direct inhibitory effect of BMS-345541 on mitotic kinases such as Cdk1, Aurora A or B, Plk1 or NEK2. This study points towards a new potential role of IKK in cell cycle progression. Since deregulation of the cell cycle is one of the hallmarks of tumor formation and progression, the newly discovered level of BMS-345541 function could be useful for cell cycle control studies and may provide valuable clues for the design of future therapeutics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aldosterone plays a major role in the regulation of salt balance and the pathophysiology of cardiovascular and renal diseases. Many aldosterone-regulated genes--including that encoding the epithelial Na+ channel (ENaC), a key arbiter of Na+ transport in the kidney and other epithelia--have been identified, but the mechanisms by which the hormone modifies chromatin structure and thus transcription remain unknown. We previously described the basal repression of ENaCalpha by a complex containing the histone H3 Lys79 methyltransferase disruptor of telomeric silencing alternative splice variant a (Dot1a) and the putative transcription factor ALL1-fused gene from chromosome 9 (Af9) as well as the release of this repression by aldosterone treatment. Here we provide evidence from renal collecting duct cells and serum- and glucocorticoid-induced kinase-1 (Sgk1) WT and knockout mice that Sgk1 phosphorylated Af9, thereby impairing the Dot1a-Af9 interaction and leading to targeted histone H3 Lys79 hypomethylation at the ENaCalpha promoter and derepression of ENaCalpha transcription. Thus, Af9 is a physiologic target of Sgk1, and Sgk1 negatively regulates the Dot1a-Af9 repressor complex that controls transcription of ENaCalpha and likely other aldosterone-induced genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Eukaryotic genomes exist within a dynamic structure named chromatin in which DNA is wrapped around an octamer of histones forming the nucleosome. Histones are modified by a range of posttranslational modifications including methylation, phosphorylation, and ubiquitination, which are integral to a range of DNA-templated processes including transcriptional regulation. A hallmark for transcriptional activity is methylation of histone H3 on lysine (K) 4 within active gene promoters. In S. cerevisiae, H3K4 methylation is mediated by Set1 within the COMPASS complex. Methylation requires prior ubiquitination of histone H2BK123 by the E2-E3 ligases Rad6 and Bre1, as well as the Paf1 transcriptional elongation complex. This regulatory pathway exemplifies cross-talk in trans between posttranslational modifications on distinct histone molecules. Set1 has an additional substrate in the kinetochore protein Dam1, which is methylated on K233. This methylation antagonizes phosphorylation of adjacent serines by the Ipl1 Aurora kinase. The discovery of a second Set1 substrate raised the question of how Set1 function is regulated at the kinetochore. I hypothesized that transcriptional regulatory factors essential for H3K4 methylation at gene promoters might also regulate Set1-mediated methylation of Dam1K233. Here I show that the regulatory factors essential for COMPASS activity at gene promoters is also indispensable for the methylation of Dam1K233. Deletion of members of the COMPASS complex leads to loss of Dam1K233 methylation. In addition, deletion of Rad6, Bre1, or members of the Paf1 complex abolishes Dam1 methylation. The role of Rad6 and Bre1 in Dam1 methylation is dependent on H2BK123 ubiquitination, as mutation of K123 within H2B results in complete loss of Dam1 methylation. Importantly, methylation of Dam1K233 is independent of transcription and occurs at the kinetochore. My results demonstrate that Set1-mediated methylation is regulated by a general pathway regardless of substrate that is composed of transcriptional regulatory factors functioning independently of transcription at the kinetochore. My data provide the first example of cross-talk in trans between modifications on a histone and a non-histone protein. Additionally, my results indicate that several factors previously thought to be required for Set1 function at gene promoters are more generally required for the catalytic activity of the COMPASS complex regardless of substrate or cellular process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background/Aims: Ceramide kinase (CerK) catalyzes the generation of the sphingolipid ceramide-1-phosphate (C1P) which regulates various cellular functions including cell growth and death, and inflammation. Here, we used a novel catalytic inhibitor of CerK, NVP-231, and CerK knockout cells to investigate the contribution of CerK to proliferation and inflammation in renal mesangial cells and fibroblasts. Methods: Cells were treated with NVP-231 and [3H]-thymidine incorporation into DNA, [3H]-arachidonic acid release, prostaglandin E2 (PGE2) synthesis, cell cycle distribution, and apoptosis were determined. Results: Treatment of rat mesangial cells and mouse renal fibroblasts with NVP-231 decreased DNA synthesis, but not of agonist-stimulated arachidonic acid release or PGE2 synthesis. Similarly, proliferation but not arachidonic acid release or PGE2 synthesis was reduced in CERK knockout renal fibroblasts. The anti-proliferative effect of NVP-231 on mesangial cells was due to M phase arrest as determined using the mitosis markers phospho-histone H3, cdc2 and polo-like kinase-1, and induction of apoptosis. Moreover, loss of CerK sensitized cells towards stress-induced apoptosis. Conclusions: Our data demonstrate that CerK induces proliferation but not PGE2 formation of renal mesangial cells and fibroblasts, and suggest that targeted CerK inhibition has potential for treating mesangioproliferative kidney diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background and Purpose Ceramide kinase (CerK) catalyzes the generation of ceramide-1-phosphate which may regulate various cellular functions, including inflammatory reactions and cell growth. Here, we studied the effect of a recently developed CerK inhibitor, NVP-231, on cancer cell proliferation and viability and investigated the role of cell cycle regulators implicated in these responses. Experimental Approach The breast and lung cancer cell lines MCF-7 and NCI-H358 were treated with increasing concentrations of NVP-231 and DNA synthesis, colony formation and cell death were determined. Flow cytometry was performed to analyse cell cycle distribution of cells and Western blot analysis was used to detect changes in cell cycle regulator expression and activation. Key Results In both cell lines, NVP-231 concentration-dependently reduced cell viability, DNA synthesis and colony formation. Moreover it induced apoptosis, as measured by increased DNA fragmentation and caspase-3 and caspase-9 cleavage. Cell cycle analysis revealed that NVP-231 decreased the number of cells in S phase and induced M phase arrest with an increased mitotic index, as determined by increased histone H3 phosphorylation. The effect on the cell cycle was even more pronounced when NVP-231 treatment was combined with staurosporine. Finally, overexpression of CerK protected, whereas down-regulation of CerK with siRNA sensitized, cells for staurosporine-induced apoptosis. Conclusions and Implications Our data demonstrate for the first time a crucial role for CerK in the M phase control in cancer cells and suggest its targeted inhibition, using drugs such as NVP-231, in combination with conventional pro-apoptotic chemotherapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The U7 snRNP involved in histone RNA 3' end processing is related to but biochemically distinct from spliceosomal snRNPs. In vertebrates, the Sm core structure assembling around the noncanonical Sm-binding sequence of U7 snRNA contains only five of the seven standard Sm proteins. The missing Sm D1 and D2 subunits are replaced by U7-specific Sm-like proteins Lsm10 and Lsm11, at least the latter of which is important for histone RNA processing. So far, it was unknown if this special U7 snRNP composition is conserved in invertebrates. Here we describe several putative invertebrate Lsm10 and Lsm11 orthologs that display low but clear sequence similarity to their vertebrate counterparts. Immunoprecipitation studies in Drosophila S2 cells indicate that the Drosophila Lsm10 and Lsm11 orthologs (dLsm10 and dLsm11) associate with each other and with Sm B, but not with Sm D1 and D2. Moreover, dLsm11 associates with the recently characterized Drosophila U7 snRNA and, indirectly, with histone H3 pre-mRNA. Furthermore, dLsm10 and dLsm11 can assemble into U7 snRNPs in mammalian cells. These experiments demonstrate a strong evolutionary conservation of the unique U7 snRNP composition, despite a high degree of primary sequence divergence of its constituents. Therefore, Drosophila appears to be a suitable system for further genetic studies of the cell biology of U7 snRNPs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Signaling via the MET receptor tyrosine kinase has been implicated in crosstalk with cellular responses to DNA damage. Our group previously demonstrated that MET inhibition in tumor cells with deregulated MET activity results in radiosensitization via downregulation of the ATR-CHK1-CDC25 pathway, a major signaling cascade responsible for intra-S and G2/M cell cycle arrest following DNA damage. Here we aimed at studying the potential therapeutic application of ionizing radiation in combination with a MET inhibitor, EMD-1214063, in p53-deficient cancer cells that harbor impaired G1/S checkpoint regulation upon DNA damage. We hypothesized that upon MET inhibition, p53-deficient cells would bypass both G1/S and G2/M checkpoints, promoting premature mitotic entry with substantial DNA lesions and cell death in a greater extent than p53-proficient cells. Our data suggest that p53-deficient cells are more susceptible to EMD-1214063 and combined treatment with irradiation than wildtype p53 lines as inferred from elevated γH2AX expression and increased cytotoxicity. Furthermore, cell cycle distribution profiling indicates constantly lower G1 and higher G2/M population as well as higher expression of a mitotic marker p-histone H3 following the dual treatment in p53 knockdown isogenic variant, compared to the parental counterpart. IMPLICATIONS The concept of MET inhibition-mediated radiosensitization enhanced by p53 deficiency is of high clinical relevance, since p53 is frequently mutated in numerous types of human cancer. The current data point for a therapeutic advantage for an approach combining MET targeting along with DNA damaging agents for MET positive/p53 negative tumors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A phosphorylation balance governed by Ipl1 Aurora kinase and the Glc7 phosphatase is essential for normal chromosome segregation in S. cerevisiae . Deletion of SET1, a histone K4 methyltransferase, suppresses the temperature sensitive phenotype of ipl1-2, and loss the catalytic activity of Set1 is important for this suppression. SET1 deletion also suppresses chromosome loss in ipl1-2 cells. Deletion of other Set1 complex components suppresses the temperature sensitivity of ipl1-2 as well. In contrast, SET1 deletion is synthetic lethal combined with glc7-127. Strikingly, these effects are independent of previously defined functions for Set1 in transcription initiation and histone H3 methylation. I find that Set1 methylates conserved lysines in a kinetochore protein, Dam1, a key mitotic substrate of Ipl1/Glc7. Biochemical and genetic experiments indicate that Dam1 methylation inhibits Ipl1-mediated phosphorylation of flanking serines. My studies demonstrate that Set1 has important, unexpected functions in mitosis through modulating the phosphorylation balance regulated by Ipl1/Glc7. Moreover, my findings suggest that antagonism between lysine methylation and serine phosphorylation is a fundamental mechanism for controlling protein function. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cancer is the most devastating disease that has tremendous impacts on public health. Many efforts have been devoted to fighting cancer through either translational or basic researches for years. Nowadays, it emerges the importance to converge these two research directions and complement to each other for battling with cancer. Thus, our study aims at both translational and basic research directions. The first goal of our study is focus on translational research to search for new agents targeting prevention and therapy of advanced prostate cancer. Hormone refractory prostate cancer is incurable and lethal. Androgen receptor (AR) mediates androgen's effect not only on the tumor initiation but also plays the major role in the relapse transition of prostate cancer. Here we demonstrate that emodin, a natural compound, can directly target AR to suppress prostate cancer cell growth in vitro and prolong the survival of C3(1)/SV40 transgenic mice in vivo. Emodin treatment resulted in repressing androgen-dependent transactivation of AR by inhibiting AR nuclear translocation. Emodin decreased the association of AR and heat shock protein 90 and increased the association of AR and MDM2, which in turn, induces AR degradation through a proteasome-mediated pathway in a ligand independent manner. Our work indicates a new mechanism for the emodin-mediated anticancer effect and justifies further investigation of emodin as a therapeutic and preventive agent for prostate cancer. The second goal of our study is try to elucidate the fundamental tumor biology of cancer progression then provide the rationale to develop more efficient therapeutic strategy. Enhancer of zeste homologue 2 (EZH2) plays an important role in many biological processes through its intrinsic methyltransferase activity to trimethylate lysine 27 in histone H3. Although overexpression of EZH2 has been shown to be involved in cancer progression, the detailed mechanisms are elusive. Here, we show that Akt phosphorylates EZH2 at serine 21 and suppresses its methyltransferase activity by impeding the binding to its substrate histone H3, resulting in a decrease of lysine 27 trimethylation and derepression of silenced genes, thus promotes cell proliferation and tumorigenicity. Our results also show that histone methylation is not permanent but regulated in a dynamic manner and that the Akt signaling pathway is involved in the regulation of this epigenetic modification through phosphorylation of EZH2, thus contributing to oncogenic processes. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this dissertation, I identify two molecular mechanisms by which transcription factors cooperate with their co-regulators to mediate gene regulation. In the first part, I demonstrate that p53 directly recruits LSD1, a histone demethylase, to AFP chromatin to demethylate methylated H3K4 and actively mediate transcription repression. Loss of p53 and LSD1 interaction at chromatin leads to derepression of AFP in hepatic cells. In the second part, I reveal that Trim24 functions as an important co-activator in ERα-mediated gene activation in response to estrogen stimulation. Trim24 is recruited by ligand-bound ERα to chromatin and stabilizes ERα-chromatin interactions by binding to histone H3 via its PHD finger, which preferentially recognizes unmethylated H3K4. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Internodes of deepwater rice are induced to grow rapidly when plants become submerged. This adaptation enables deepwater rice to keep part of its foliage above the rising flood waters during the monsoon season and to avoid drowning. This growth response is, ultimately, elicited by the plant hormone gibberellin (GA). The primary target tissue for GA action is the intercalary meristem of the internode. Using differential display of mRNA, we have isolated a number of genes whose expression in the intercalary meristem is regulated by GA. The product of one of these genes was identified as an ortholog of replication protein A1 (RPA1). RPA is a heterotrimeric protein involved in DNA replication, recombination, and repair and also in regulation of transcription. A chimeric construct, in which the single-stranded DNA-binding domain of rice RPA1 was spliced into the corresponding region of yeast RPA1, was able to complement a yeast rpa1 mutant. The transcript level of rice RPA1 is high in tissues containing dividing cells. RPA1 mRNA levels increase rapidly in the intercalary meristem during submergence and treatment with GA before the increase in the level of histone H3 mRNA, a marker for DNA replication.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Development of the central nervous system requires proliferation of neuronal and glial cell precursors followed by their subsequent differentiation in a highly coordinated manner. The timing of neuronal cell cycle exit and differentiation is likely to be regulated in part by inhibitors of cyclin-dependent kinases. Overlapping and sustained patterns of expression of two cyclin-dependent kinases, p19Ink4d and p27Kip1, in postmitotic brain cells suggested that these proteins may be important in actively repressing neuronal proliferation. Animals derived from crosses of Ink4d- null with Kip1-null mice exhibited bradykinesia, proprioceptive abnormalities, and seizures, and died at about 18 days after birth. Metabolic labeling of live animals with bromodeoxyuridine at postnatal days 14 and 18, combined with immunolabeling of neuronal markers, showed that subpopulations of central nervous system neurons were proliferating in all parts of the brain, including normally dormant cells of the hippocampus, cortex, hypothalamus, pons, and brainstem. These cells also expressed phosphorylated histone H3, a marker for late G2 and M-phase progression, indicating that neurons were dividing after they had migrated to their final positions in the brain. Increased proliferation was balanced by cell death, resulting in no gross changes in the cytoarchitecture of the brains of these mice. Therefore, p19Ink4d and p27Kip1 cooperate to maintain differentiated neurons in a quiescent state that is potentially reversible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The histone H4 acetylation status of the active X (Xa) and inactive X (Xi) chromosomes was investigated at the level of individual genes. A moderate level of acetylation was observed along the lengths of genes on both the Xi and Xa, regardless of their X inactivation status. However, this moderate level of acetylation was modified specifically in promoter regions. Transcriptionally active genes showed elevated levels of acetylation at their promoters on both the Xi and Xa. In contrast, promoters of X-inactivated genes were markedly hypoacetylated, which coincided with the methylation of adjacent CG dinucleotides. This promoter-specific hypoacetylation may be a key component of an X inactivation machinery that operates at the level of individual genes.