972 resultados para histamine H2 receptor antagonist
Resumo:
We have previously shown that complement factor 5a(C5a) plays a role in the pathogenesis of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats by using the selective, orally active C5a antagonist AcF-[OP(D-Cha) WR]. This study tested the efficacy and potency of a new C5a antagonist, hydrocinnamate (HC)-[OP(D-Cha) WR], which has limited intestinal lumenal metabolism, in this model of colitis. Analogs of AcF-[OP(D-Cha) WR] were examined for their susceptibility to alimentary metabolism in the rat using intestinal mucosal washings. One metabolically stable analog, HC-[OP(D-Cha)WR], was then evaluated pharmacokinetically and investigated at a range of doses (0.03 - 10 mg/kg/ day p.o.) in the 8-day rat TNBS- colitis model, against the comparator drug AcF-[OP(D-Cha) WR]. Using various amino acid substitutions, it was determined that the AcF moiety of AcF-[OP(D-Cha) WR] was responsible for the metabolic instability of the compound in intestinal mucosal washings. The analog HC-[OP( D-Cha) WR], equiactive in vitro to AcF-[OP(D-Cha) WR], was resistant to intestinal metabolism, but it displayed similar oral bioavailability to AcF-[OP(D-Cha) WR]. However, in the rat TNBS- colitis model, HC-[OP(D-Cha) WR] was effective at reducing mortality, colon edema, colon macroscopic scores, and increasing food consumption and body weights, at 10- to 30- fold lower oral doses than AcF-[OP( D-Cha) WR]. These studies suggest that resistance to intestinal metabolism by HC-[OP(D-Cha) WR] may result in increased local concentrations of the drug in the colon, thus affording efficacy with markedly lower oral doses than AcF-[OP(D-Cha) WR] against TNBS-colitis. This large increase in potency and high efficacy of this compound makes it a potential candidate for clinical development against intestinal diseases such as inflammatory bowel disease.
Resumo:
Obesity and alcoholism are two common modern-day diseases. The cannabinoid CB, receptor antagonist rimonabant is in Phase III clinical trial for the treatment of obesity with preliminary results showing that it decreases appetite and body weight. Animal studies have shown that rimonabant is effective in the treatment of alcoholism. SR-147778 is a new potent and selective CB1 receptor antagonist. In animals, SR-147778 has been shown to inhibit CB1 receptor-mediated hypothermia, analgesia and slowing of gastrointestinal transit. In rats trained to drink sucrose, the oral administration of SR-147778 3 mg/kg, before the presentation of sucrose, decreased the consumption of sucrose. SR-147778 3 mg/kg also reduced spontaneous feeding in rats deprived of food and also in non-deprived rats. In Sardinian alcohol-preferring (sP) rats, in the alcohol-naive state, SR-147778 slowed the development of a preference for alcohol. in alcohol-experienced sP rats SR-147778 (2.5, 5 and 10 mg/kg p.o.) reduced the alcohol intake. When alcohol-experienced sP rats are deprived of alcohol for 15 days, there is a large intake of alcohol on reintroduction of alcohol, and this response was almost abolished by treatment with SR-147778. From the preclinical studies published to date, there is no obvious major point of difference between rimonabant and SR-147778, and both are promising agents for the treatment of obesity and alcoholism.
Resumo:
Colon and pancreatic cancers contribute to 90,000 deaths each year in the USA. These cancers lack targeted therapeutics due to heterogeneity of the disease and multiple causative factors. One important factor that contributes to increased colon and pancreatic cancer risk is gastrin. Gastrin mediates its actions through two G-protein coupled receptors (GPCRs): cholecystokinin receptor A (CCK-A) and CCK-B/gastrin receptor. Previous studies have indicated that colon cancer predominantly expresses CCK-A and responds to CCK-A isoform antagonists. However, many CCK-A antagonists have failed in the clinic due to poor pharmacokinetic properties or lack of efficacy. In the present study, we synthesized a library of CCK-A isoform-selective antagonists and tested them in various colon and pancreatic cancer preclinical models. The lead CCK-A isoform, selective antagonist PNB-028, bound to CCK-A at 12 nM with a 60-fold selectivity towards CCK-A over CCK-B. Furthermore, it inhibited the proliferation of CCK-A-expressing colon and pancreatic cancer cells without affecting the proliferation of non-cancerous cells. PNB-028 was also extremely effective in inhibiting the growth of MAC-16 and LoVo colon cancer and MIA PaCa pancreatic cancer xenografts in immune-compromised mice. Genomewide microarray and kinase-array studies indicate that PNB-028 inhibited oncogenic kinases and angiogenic factors to inhibit the growth of colon cancer xenografts. Safety pharmacology and toxicology studies have indicated that PNB-028 is extremely safe and has a wide safety margin. These studies suggest that targeting CCK-A selectively renders promise to treat colon and pancreatic cancers and that PNB-028 could become the next-generation treatment option.
Resumo:
The importance of pyrazole and isoquinoline-5,8-dione scaffolds in medical chemistry is underlined by the high number of drugs currently on trading that contains these active ingredients. Due to their cytotoxic capability, the interest of medicinal chemists in these heterocyclic rings has grown exponentially especially, for cancer therapy. In this project, the first synthesis of pyrazole-fused isoquinoline-5,8-diones has been developed. 1,3-Dipolar cycloaddition followed by oxidative aromatization, established by our research group, has been employed. Screening of reaction conditions and characterization studies about the regioselectivity have been successfully performed. A remote control of regioselectivity, to achieve the two possible regioisomers has been accomplished. Through Molecular Docking studies, Structure-Activity relationship of differently substituted scaffolds containing our central core proved that a family of PI3K inhibitors have been discovered. Finally, in order to verify the promising antitumor activity, a first test of cell viability in vitro on T98G cell line of a solid brain tumor, the Glioblastoma Multiforme, showed cytotoxic inhibition comparable to currently trade anticancer drugs.
Resumo:
This article describes the application of a recently developed general unknown screening (GUS) strategy based on LC coupled to a hybrid linear IT-triple quadrupole mass spectrometer (LC-MS/MS-LIT) for the simultaneous detection and identification of drug metabolites following in vitro incubation with human liver microsomes. The histamine H1 receptor antagonist loratadine was chosen as a model compound to demonstrate the interest of such approach, because of its previously described complex and extensive metabolism. Detection and mass spectral characterization were based on data-dependent acquisition, switching between a survey scan acquired in the ion-trapping Q3 scan mode with dynamic subtraction of background noise, and a dependent scan in the ion-trapping product ion scan mode of automatically selected parent ions. In addition, the MS(3) mode was used in a second step to confirm the structure of a few fragment ions. The sensitivity of the ion-trapping modes combined with the selectivity of the triple quadrupole modes allowed, with only one injection, the detection and identification of 17 phase I metabolites of loratadine. The GUS procedure used in this study may be applicable as a generic technique for the characterization of drug metabolites after in vitro incubation, as well as probably in vivo experiments.
Resumo:
The dopaminergic, serotoninergic and GABA-ergic systems are closely involved in PRL secretion, as well as thyrotropin-releasing hormone. There is some evidence that zinc interacts with some of these neuroamines and neuropeptides. The histamine H2-receptor cimetidine stimulates PRL secretion rapidly following an intravenous injection in man. In this sense, we investigated probable inhibitory effect of zinc on prolactin secretion following cimetidine injection (300 mg). Therefore, we studied five healthy adult men, before and after oral zinc administration (25 mg elemental zinc) during three consecutive months. The results did not demonstrate any inhibitory effect of zinc on prolactin secretion. So, we originally concluded that zinc did not interact with dopamine, serotonine, gamma-aminobutyric acid and the thyrotropin-releasing hormone in humans. In addition, the intravenous administration of cimetidine did not change the serum zinc profile. © 2005 Dustri-Vertag Dr. K. Feistle.
Resumo:
The overall aim of this study was to further understanding of themechanisms by which inhibitors of secretory activity mediate their action inisolated stomach cells. One objective was to determine whether a G-proteinsensitive to inactivation by pertussis toxin was involved in the action of thefollowing inhibitors of histamine-stimulated acid secretion: prostaglandin E2(PGE2), somatostatin, epidermal growth factor (EGF) and 12-0-tetradecanoylphorbol 13-acetate (TPA), an activator of protein kinase C.The site and mechanism by which EGF inhibited acid secretion and itseffects on pepsinogen secretion were also of interest. Further objectiveswere to determine whether TPA could induce down-regulation of proteinkinase C in parietal cells and to examine the inhibitory action of cyclic GMPon acid secretion. Acid secretion was estimated by the accumulation of theweak base aminopyrine in parietal cells. Experiments in which cells were preincubated with pertussis toxinindicated that PGE2, somatostatin and EGF mediated their inhibitory actionagainst histamine-stimulation via an inhibitory G-protein of the "Gi·like"family. Stimulation of PGE2 production by EGF also involved a pertussistoxin-sensitive G-protein. EGF inhibited acid secretion stimulated byforskolin, but only in the absence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). This action of EGF was sensitive toinactivation by pertussis toxin. It is suggested that the effect of EGF was dueto an increase in low Km cyclic AMP phosphodiesterase activity, rather thanan effect on the histamine (H2) receptor. EGF did not inhibit pepsinogensecretion. TPA exerted only a small part of its inhibitory action by a mechanismsensitive to pertussis toxin. TPA was unable to induce detectable down-regulationof protein kinase C. Acid secretion stimulated by near-maximallyeffective concentrations of h1stamme plus IBMX, dibutyryl cyclic AMP(dbcAMP) and K+ was inhibited by dibutyryl cyclic GMP (dbcGMP).
Resumo:
The work presented in this thesis was undertaken to increase understanding of the intracellular mechanisms regulating acid secretion by gastric parietal cells. Investigation of the effects of protein kinase C on secretory activity induced by a variety of agents was a major objective. A further aim was to establish the sites at which epidermal growth factor (EGF) acts to stimulate prostaglandin E2 (PGE2) production and to inhibit acid secretion. These investigations were carried out by using the HGT-1 human gastric cancer cell line and freshly isolated rat parietal cells. In HGT-1 cells, the cyclic AMP response to histamine and to truncated glucagon-like peptide 1 (TGLP-1) was reduced when protein kinase C was activated by 12-0-tetradecanoylphorbol 13-acetate (TPA). Receptor-binding studies and experiments in which cyclic AMP production in HGT-1 cells was stimulated by gastric inhibitory polypeptide, cholera toxin and forskolin suggested that the effect of TPA was mediated by uncoupling of the histamine H2 receptor from the guanine nucleotide regulatory protein Gs, possibly by phosphorylation of the receptor. An involvement of protein kinase C α in this effect was suggested because an antibody to this isoform specifically prevented the inhibitory effects of TPA on histamine-stimulated adenylate cyclase activity in a membrane fraction prepared from HGT-1 cells. Carbachol-stimulated secretory activity in parietal cells was specifically inhibited by Ro 31-8220, a bisindolylmaleimide inhibitor of protein kinase C. Thus protein kinase C may play a role in the activation of the secretory response to carbachol. In parietal cells prelabelled with [3H]-arachidonic acid or [3H]myristic acid, EGF did not affect [3H]-fatty acid or [3H] - diacylglycerol content. No evidence for effects of EGF on phosphatidylinositol glycan-specific phospholipase C, phospholipase A2 or on low Km cyclic AMP phosphodiesterase activities were found.