990 resultados para high temperatures


Relevância:

70.00% 70.00%

Publicador:

Resumo:

New petrologic, thermobarometric and U-Pb monazite geochronologic information allowed to resolve the metamorphic evolution of a high temperature mid-crustal segment of an ancient subduction-related orogen. The EI Portezuelo Metamorphic-Igneous Complex, in the northern Sierras Pampeanas, is mainly composed of migmatites that evolved from amphibolite to granulite metamorphic facies, reaching thermal peak conditions of 670-820 degrees C and 4.5-5.3 kbar. The petrographic study combined with conventional and pseudosection thermobarometry led to deducing a short prograde metamorphic evolution within migmatite blocks. The garnet-absent migmatites represent amphibolite-facies rocks, whereas the cordierite-garnet-K-feldspar-sillimanite migmatites represent higher metamorphic grade rocks. U-Pb geochronology on monazite grains within leucosome record the time of migmatization between approximate to 477 and 470 Ma. Thus, the El Portezuelo Metamorphic-Igneous Complex is an example of exhumed Early Ordovician anatectic middle crust of the Famatinian mobile belt. Homogeneous exposure of similar paleo-depths throughout the Famatinian back-arc and isobaric cooling paths suggest slow exhumation and consequent longstanding crustal residence at high temperatures. High thermal gradients uniformly distributed in the Famatinian back-arc can be explained by shallow convection of a low-viscosity asthenosphere promoted by subducting-slab dehydration. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The studied sector of the central Ribeira Fold Belt (SE Brazil) comprises metatexites, diatexites, charnockites and blastomylonites. This study integrates petrological and thermochronological data in order to constrain the thermotectonic and geodynamic evolution of this Neoproterozoic-Ordovician mobile belt during Western Gondwana amalgamation. New data indicate that after an earlier collision stage at similar to 610 Ma (zircon, U-Pb age), peak metamorphism and lower crust partial melting, coeval with the main regional high grade D(1) thrust deformation, occurred at 572-562 Ma (zircon, U-Pb ages). The overall average cooling rate was low (<5 degrees C/Ma) from 750 to 250 degrees C (at similar to 455 Ma; biotite-WR Rb-Sr age), but disparate cooling paths indicate differential uplift between distinct lithotypes: (a) metatexites and blastomylonites show a overall stable 3-5 degrees C/Ma cooling rate; (b) charnockites and associated rocks remained at T>650 degrees C during sub-horizontal D(2) shearing until similar to 510-470 Ma (garnet-WR Sm-Nd ages) (1-2 degrees C/Ma), being then rapidly exhumed/cooled (8-30 degrees C/Ma) during post-orogenic D(3) deformation with late granite emplacement at similar to 490 Ma (zircon, U-Pb age). Cooling rates based on garnet-biotite Fe-Mg diffusion are broadly consistent with the geochronological cooling rates: (a) metatexites were cooled faster at high temperatures (6 degrees C/Ma) and slowly at low temperatures (0.1 degrees C/Ma), decreasing cooling rates with time; (b) charnockites show low cooling rates (2 degrees C/Ma) near metamorphic peak conditions and high cooling rates (120 degrees C/Ma) at lower temperatures, increasing cooling rates during retrogression. The charnockite thermal evolution and the extensive production of granitoid melts in the area imply that high geothermal gradients were sustained fora long period of time (50-90 Ma). This thermal anomaly most likely reflects upwelling of asthenospheric mantle and magma underplating coupled with long-term generation of high HPE (heat producing elements) granitoids. These factors must have sustained elevated crustal geotherms for similar to 100 Ma, promoting widespread charnockite generation at middle to lower crustal levels. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As respostas às mudanças de temperatura de plantas aclimatadas e não aclimatadas de E. grandis cultivadas in vitro foram avaliadas considerando alterações dos níveis de prolina e proteínas solúveis totais. Análises de proteínas solúveis através de SDS-PAGE e prolina foram realizadas após 12h a 12ºC (aclimatação ao frio) ou a 33ºC (aclimatação ao calor), e imediatamente depois dos choques térmicos a 41ºC e 0ºC. Análises também foram realizadas após um período de 24h depois dos choques térmicos (período de recuperação). O tratamento de temperatura a 0ºC não alterou o padrão de proteínas nas plantas aclimatadas e não aclimatadas, entretanto a temperatura baixa induziu altos níveis de prolina, que se mantiveram relativamente altos após o período de recuperação. Três novas proteínas (90,5, 75 e 39 kDa), provavelmente HSPs, foram observadas nas plantas aclimatadas e não aclimatadas submetidas às temperaturas altas. As plantas expostas a 41ºC foram capazes de recuperar-se dos choques após o período de recuperação, entretanto não houve recuperação completa das plantas expostas às baixas temperaturas. O efeito da aclimatação sobre a recuperação (homeostasis) pode variar dependendo do parâmetro avaliado, tipo e duração do choque térmico.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We examine a Lipkin based two-level pairing model at finite temperature and in the thermodynamic limit. Whereas at T = 0 the model exhibits a superconducting ground state for sufficiently high values of the coupling constant, a partially superconducting phase in which some of the particles are paired, is found to survive at high temperatures in a special treatment. This phase is a mixture of abnormally-occupied eigenstates, which lie at higher energy, of the interactionless model Hamiltonian.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The study was conducted at the Section of Crop Production and Aromatic Medicinal Plants of FCAV-UNESP, Jaboticabal Campus - Sao Paulo, Brazil. Nine indeterminate tomato (Lycopersicon esculentum Mill.) genotypes, Jumbo, Santa Clara, Cláudia VF, Concorde, Débora Plus, FM-9, Carmen, Príncipe Gigante, and CL 5915, were evaluated for high temperature tolerance. Three determinate tomato genotypes, FM-9, Suncoast and TSW-10, were cultivated in a greenhouse at more than 33°C air temperature for at least 2 h/day during bloom. The objective was to identify variable genotypes to determine their tolerance of high temperature. Four replications of fifteen treatments were planted in a randomized block design. Dissimilarity was determined by the generalized Mahalanobis distance. Delineation groups were optimized with the Tocher technique. The tomatoes were classified into six groups of similar temperature responses. CL 5915 was the most tolerant of high temperatures. Crossing of genotypes within one group has no advantage because little genetic divergence and no heterotic response would be expected. However, the crossing of genotypes between groups is suggested. Knowledge of these groups will be important for efficient future breeding efforts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Processing of the YMn2O5 powder is very challenging, since it decomposes to YMnO3 and Mn3O4 at temperatures close to 1180 °C, while samples consolidation commonly demands high temperatures. The main goal of this work is to investigate a possibility to prepare thick films of YMn2O5, since their deposition generally requires significantly lower temperatures. Multiferroic YMn 2O5 was synthesized by the hydrothermal method from Y(CH3COO)3·xH2O, Mn(CH 3COO)2·4H2O and KMnO4 precursors. XRD, FE-SEM and TEM analysis showed that the obtained powder was monophasic, with orthorhombic crystal structure and columnar particle shape with mean diameter and length of around 20 and 50 nm, respectively. The obtained powder was suspended in isopropyl alcohol with addition of appropriate binder and deflocculant. This suspension was used for electrophoretic deposition of YMn2O5 thick films under the high-voltage conditions and electric fields ranging from 250 to 2125 V/cm. The films obtained at 1000 V/cm and higher electric fields showed good adhesion, particle packing, homogeneity and very low porosity. It was shown that the deposition in extremely high electric fields (KC=2125 V/cm) can influence the crystal orientation of the films, resulting in formation of preferentially oriented films. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As the area of nanotechnology continues to grow, the development of new nanomaterials with interesting physical and electronic properties and improved characterization techniques are several areas of research that will be remain vital for continued improvement of devices and the understanding in nanoscale phenomenon. In this dissertation, the chemical vapor deposition synthesis of rare earth (RE) compounds is described in detail. In general, the procedure involves the vaporization of a REClx (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho) in the presence of hydride phase precursors such as decaborane and ammonia at high temperatures and low pressures. The vapor-liquid-solid mechanism was used in combination with the chemical vapor deposition process to synthesize single crystalline rare earth hexaboride nanostructures. The crystallographic orientation of as-synthesized rare earth hexaboride nanostructures and gadolinium nitride thin films was controlled by judicious choice of specific growth substrates and modeled by analyzing x-ray diffraction powder patterns and crystallographic models. The rare earth hexaboride nanostructures were then implemented into two existing technologies to enhance their characterization capabilities. First, the rare earth hexaboride nanowires were used as a test material for the development of a TEM based local electrode atom probe tomography (LEAP) technique. This technique provided some of the first quantitative compositional information of the rare earth hexaboride systems. Second, due to the rigidity and excellent conductivity of the rare earth hexaborides, nanostructures were grown onto tungsten wires for the development of robust, oxidation resistant nanomanipulator electronic probes for semiconductor device failure analysis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Small clusters of gallium oxide, technologically important high temperature ceramic, together with interaction of nucleic acid bases with graphene and small-diameter carbon nanotube are focus of first principles calculations in this work. A high performance parallel computing platform is also developed to perform these calculations at Michigan Tech. First principles calculations are based on density functional theory employing either local density or gradient-corrected approximation together with plane wave and gaussian basis sets. The bulk Ga2O3 is known to be a very good candidate for fabricating electronic devices that operate at high temperatures. To explore the properties of Ga2O3 at nonoscale, we have performed a systematic theoretical study on the small polyatomic gallium oxide clusters. The calculated results find that all lowest energy isomers of GamOn clusters are dominated by the Ga-O bonds over the metal-metal or the oxygen-oxygen bonds. Analysis of atomic charges suggest the clusters to be highly ionic similar to the case of bulk Ga2O3. In the study of sequential oxidation of these slusters starting from Ga2O, it is found that the most stable isomers display up to four different backbones of constituent atoms. Furthermore, the predicted configuration of the ground state of Ga2O is recently confirmed by the experimental result of Neumark's group. Guided by the results of calculations the study of gallium oxide clusters, performance related challenge of computational simulations, of producing high performance computers/platforms, has been addressed. Several engineering aspects were thoroughly studied during the design, development and implementation of the high performance parallel computing platform, rama, at Michigan Tech. In an attempt to stay true to the principles of Beowulf revolutioni, the rama cluster was extensively customized to make it easy to understand, and use - for administrators as well as end-users. Following the results of benchmark calculations and to keep up with the complexity of systems under study, rama has been expanded to a total of sixty four processors. Interest in the non-covalent intereaction of DNA with carbon nanotubes has steadily increased during past several years. This hybrid system, at the junction of the biological regime and the nanomaterials world, possesses features which make it very attractive for a wide range of applicatioins. Using the in-house computational power available, we have studied details of the interaction between nucleic acid bases with graphene sheet as well as high-curvature small-diameter carbon nanotube. The calculated trend in the binding energies strongly suggests that the polarizability of the base molecules determines the interaction strength of the nucleic acid bases with graphene. When comparing the results obtained here for physisorption on the small diameter nanotube considered with those from the study on graphene, it is observed that the interaction strength of nucleic acid bases is smaller for the tube. Thus, these results show that the effect of introducing curvature is to reduce the binding energy. The binding energies for the two extreme cases of negligible curvature (i.e. flat graphene sheet) and of very high curvature (i.e. small diameter nanotube) may be considered as upper and lower bounds. This finding represents an important step towards a better understanding of experimentally observed sequence-dependent interaction of DNA with Carbon nanotubes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Climate models predict more frequent and more severe extreme events (e.g., heat waves, extended drought periods, flooding) in many regions for the next decades. The impact of adverse environmental conditions on crop plants is ecologically and economically relevant. This review is focused on drought and heat effects on physiological status and productivity of agronomically important plants. Stomatal opening represents an important regulatory mechanism during drought and heat stress since it influences simultaneously water loss via transpiration and CO2 diffusion into the leaf apoplast which further is utilized in photosynthesis. Along with the reversible short-term control of stomatal opening, stomata and leaf epidermis may produce waxy deposits and irreversibly down-regulate the stomatal conductance and non-stomatal transpiration. As a consequence photosynthesis will be negatively affected. Rubisco activase—a key enzyme in keeping the Calvin cycle functional—is heat-sensitive and may become a limiting factor at elevated temperature. The accumulated reactive oxygen species (ROS) during stress represent an additional challenge under unfavorable conditions. Drought and heat cause accumulation of free amino acids which are partially converted into compatible solutes such as proline. This is accompanied by lower rates of both nitrate reduction and de novo amino acid biosynthesis. Protective proteins (e.g., dehydrins, chaperones, antioxidant enzymes or the key enzyme for proline biosynthesis) play an important role in leaves and may be present at higher levels under water deprivation or high temperatures. On the whole plant level, effects on long-distance translocation of solutes via xylem and phloem and on leaf senescence (e.g., anticipated, accelerated or delayed senescence) are important. The factors mentioned above are relevant for the overall performance of crops under drought and heat and must be considered for genotype selection and breeding programs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Zr-in-rutile geothermometer is potentially a widely applicable tool to estimate peak metamorphic temperatures in rocks from diverse geological settings. In order to evaluate its usefulness and reliability to record and preserve high temperatures in granulite facies rocks, rutile from UHT rocks was investigated to assess different mechanisms of Zr (re-)distribution following cooling from high temperature. Granulite facies paragneisses from the lowermost part of the Ivrea Zone, Italy, incorporated as thin sheets into the extensive basaltic body of the Mafic Complex were selected for this study. The results show that Zr-in-rutile thermometry, if properly applied, is well suited to identify and study UHT terranes as it preserves a record of temperatures up to 1190 °C, although the thermometer is susceptible to partial post-peak metamorphic resetting by Zr diffusion. Texturally homogeneous rutile grains preserve Zr concentrations corresponding to temperatures of prograde rutile growth. Diverse rutile textures and relationships between some rutile host grains and included or adjacent Zr-bearing phases bear testimony to varying mechanisms of partial redistribution and resetting of Zr in rutile during cooling and link Zr-in-rutile temperatures to different steps of the metamorphic evolution. Rutile grains that equilibrated their Zr concentrations at temperatures above 1070 °C (i.e. 1.1 wt% Zr) could not retain all Zr in the rutile structure during cooling and exsolved baddeleyite (ZrO2). By subsequent reaction of baddeleyite exsolution lamellae with SiO2, zircon needles formed before the system finally closed at 650–700 °C without significant net loss of Zr from the whole host rutile grain. By reintegration of zircon exsolution needles, peak metamorphic temperatures of up to 1190 °C are derived for the studied rocks, which demonstrates the suitability of this solution thermometer to record UHT conditions and also confirms the extraordinary geological setting of the lowermost part of the Ivrea Zone.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Hole 735B was drilled to a depth of 1.5 km in a tectonic window of gabbroic lower oceanic crust created at the Southwest Indian Ridge. The gabbros have a very stable natural remanent magnetization (NRM) of reversed polarity with most unblocking temperatures slightly below the Curie temperature of magnetite. The NRM includes a drilling-induced overprint but its intensity decays strongly towards the interior of the drill core. The demagnetization data yield no or only a very small secondary magnetization component acquired during the present Brunhes chron or an earlier normal chron, suggesting cooling through most of the blocking temperature range during chron C5r and a strong resistance against the acquisition of thermoviscous magnetization. A novel furnace has been designed to measure magnetizations and their time dependences at high temperatures (up to 580 deg C) inside a commercial SQUID magnetometer. Magnetic viscosity experiments have been conducted on the gabbros at temperatures up to 550 deg C to determine the time and temperature stability of remanent magnetization. Viscosities are generally small and increase little with temperature below the main blocking temperature, where the increase becomes almost an order of magnitude. Extrapolations to geological times infer viscous acquisitions that would be 5-25% of a thermoremanence in 100 kyr and at temperatures of 200-500 deg C. At ocean bottom temperature the predicted magnetization of one sample acquired in the present Brunhes chron should be 10% of the NRM. However, this is not recognized during NRM demagnetization and partial thermoremanent magnetization (pTRM) acquisitions at 250 deg C are also much smaller than predicted. It thus appears that the NRMs are generally magnetically harder than magnetizations acquired after heating to 570 deg C in the laboratory. Susceptibility changes during heating are small (<5%) indicating a seemingly stable magneto-mineralogy, but conspicuous minima occur after heating to 520 deg C. Also, quasi paleointensity experiments reveal characteristic patterns in the NRM/pTRM ratios and also large increases in pTRM capacity after heating to 570 deg C. Moreover, anhysteretic remanent magnetization acquisition in the low field range (<=10 mT) is strongly enhanced after heating by factors up to three. The alteration of the magneto-mineralogy is interpreted to result from the annealing of defects in magnetite that originate from tectonically induced strain. The oceanic gabbros of Hole 735B are thus ideal source layer material for marine magnetic anomalies, and secondary thermoviscous acquisition, as a possible cause for anomalous skewness, is essentially absent.