962 resultados para high spin state


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Naïve FoxP3-expressing regulatory T-cells (Tregs) are essential to control immune responses via continuous replenishment of the activated-Treg pool with thymus-committed suppressor cells. The mechanisms underlying naïve-Treg maintenance throughout life in face of the age-associated thymic involution remain unclear. We found that in adults thymectomized early in infancy the naïve-Treg pool is remarkably well preserved, in contrast to conventional naïve CD4 T-cells. Naïve-Tregs featured high levels of cycling and pro-survival markers, even in healthy individuals, and contrasted with other circulating naïve/memory CD4 T-cell subsets in terms of their strong γc-cytokine-dependent signaling, particularly in response to IL-7. Accordingly, ex-vivo stimulation of naïve-Tregs with IL-7 induced robust cytokine-dependent signaling, Bcl-2 expression, and phosphatidylinositol 3-kinase (PI3K)-dependent proliferation, whilst preserving naïve phenotype and suppressive capacity. Altogether, our data strongly implicate IL-7 in the thymus-independent long-term survival of functional naïve-Tregs, and highlight the potential of targeting the IL-7 pathway to modulate Tregs in different clinical settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aim of this thesis is to investigate the application of methods of differential geometry to the constraint analysis of relativistic high spin field theories. As a starting point the coordinate dependent descriptions of the Lagrangian and Dirac-Bergmann constraint algorithms are reviewed for general second order systems. These two algorithms are then respectively employed to analyse the constraint structure of the massive spin-1 Proca field from the Lagrangian and Hamiltonian viewpoints. As an example of a coupled field theoretic system the constraint analysis of the massive Rarita-Schwinger spin-3/2 field coupled to an external electromagnetic field is then reviewed in terms of the coordinate dependent Dirac-Bergmann algorithm for first order systems. The standard Velo-Zwanziger and Johnson-Sudarshan inconsistencies that this coupled system seemingly suffers from are then discussed in light of this full constraint analysis and it is found that both these pathologies degenerate to a field-induced loss of degrees of freedom. A description of the geometrical version of the Dirac-Bergmann algorithm developed by Gotay, Nester and Hinds begins the geometrical examination of high spin field theories. This geometric constraint algorithm is then applied to the free Proca field and to two Proca field couplings; the first of which is the minimal coupling to an external electromagnetic field whilst the second is the coupling to an external symmetric tensor field. The onset of acausality in this latter coupled case is then considered in relation to the geometric constraint algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of novel polymeric compounds of formula [M(btzb)3][ClO4]2 (Mll = Fe, Ni or Cu) with btzb = 1,4-bis-(tetrazol-1-yl)butane have been prepared and their physical properties investigated. The btzb ligand has been prepared and its crystal structure determined, together with a tentative crystal structure of the 3-D compound [Fe(btzb)3][ClO4]2. The model of the latter shows two symmetry-related, interpenetrating Fe-btzb networks in which the iron(II) ions approach each other as close as 8.3 and 9.1 Å. This supramolecular catenane undergoes a sharp thermal spin transition around 160 K with hysteresis (20 K) along with a pronounced thermochromic effect. The spin crossover behaviour has been followed by magnetic, DSC, optical spectroscopy and 57Fe Mössbauer spectroscopy measurements. Irradiation with green light at low temperature leads to population of the metastable high-spin state for the thermally active iron(ll) ions. The nature of the spin crossover behaviour has been discussed in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and crystal structure (at 100K) of the title compound, Cs[Fe(C11H13N3O2S2) 2] CH3OH, is reported. The asymmetric unit consists of an octahedral [FeIII(L)2]- fragment, where L 2- is 3-ethoxysalicylaldehyde 4-methylthiosemicarbazonate(2-) {systematic name: [2-(3-ethoxy-2-oxidobenzylidene)hydrazin-1-ylidene] (methylamino)methanethiolate}, a caesium cation and a methanol solvent molecule. Each L2- ligand binds through the thiolate S, the imine N and the phenolate O atoms as donors, resulting in an FeIIIS2N 2O2 chromophore. The O,N,S-coordinating ligands are orientated in two perpendicular planes, with the O and S atoms in cis positions and the N atoms in trans positions. The FeIII cation is in the low-spin state at 100K. © 2014 International Union of Crystallography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of 1,3-bis(tetrazol-1-yl)-2-propanol (btzpol) with Fe(BF4)2 · 6H2O in acetonitrile yields the remarkable 2D coordination polymer [FeII(btzpol)1.8(btzpol-OBF3)1.2](BF4)0.8 · (H2O)0.8(CH3CN) (1). This compound has been structurally characterized using an X-ray single-crystal synchrotron radiation source. The iron(II) centers are bridged by means of double btzpol bridges along the c direction, and by single btzpol bridges along the b direction. The reaction of part of the ligand with the counterion has forced the compound to crystallize in this extended two dimensional structure. The compound shows spin-transition properties, both induced by temperature and light, with T½ = 112 K and T(LIESST) = 46 K, respectively. The relaxation of the metastable high-spin state created by irradiation is exponential, following an Arrhenius type behavior at high temperature, and dominated by a temperature independent tunneling process at lower temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

57Fe Mössbauer spectroscopy of the mononuclear [Fe(II)(isoxazole)6](BF4) 2compound has been studied to reveal the thermal spin crossover of Fe(II) between low-spin (S = 0) and high-spin (S = 2) states. A temperature-dependent spin transition curve has been constructed with the least-square fitted data obtained from the Mössbauer spectra measured at various temperatures in the 240-60K range during the cooling and heating cycle. The compound exhibits a temperature-dependent two-step spin transition phenomenon with Tsco (step 1) = 92 and Tsco (step2) = 191K. The compound has three high-spin Fe(II) sites at the highest temperature of study; among them, two have slightly different coordination environments. These two Fe(II) sites are found to undergo a spin transition, while the third Fe(II) site retains the high-spin state over the whole temperature range. Possible reasons for the formation of the two steps in the spin transition curve are discussed. The observations made from the present study are in complete agreement with those envisaged from earlier magnetic and structural studies made on [Fe(II)(isoxazole)6](BF4)2, but highlights the nature of the spin crossover mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene, due to its exceptional properties, is a promising material for nanotechnology applications. In this context, the ability to tune the properties of graphene-based materials and devices with the incorporation of defects and impurities can be of extraordinary importance. Here we investigate the effect of uniaxial tensile strain on the electronic and magnetic properties of graphene doped with substitutional Ni impurities (Ni_sub). We have found that, although Ni_sub defects are non-magnetic in the relaxed layer, uniaxial strain induces a spin moment in the system. The spin moment increases with the applied strain up to values of 0.3-0.4 \mu_B per Ni_sub, until a critical strain of ~6.5% is reached. At this point, a sharp transition to a high-spin state (~1.9 \mu_B) is observed. This magnetoelastic effect could be utilized to design strain-tunable spin devices based on Ni-doped graphene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana However, forced acidification through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation, and expansin action may be more flexible in roots than in shoots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two inorganic-organic hybrid framework iron phosphate-oxalates, I, [N2C4H12](0.5)[Fe-2(HPO4)(C2O4)(1.5)] and II, [Fe-2(OH2)PO4(C2O4)(0.5)] have been synthesized by hydrothermal means and the structures determined by X-ray crystallography. Crystal Data: compound I, monoclinic, spacegroup = P2(1)/c (No. 14), a=7.569(2) Angstrom, b=7.821(2) Angstrom, c=18.033(4) Angstrom, beta=98.8(1)degrees, V=1055.0(4) Angstrom(3), Z=4, M=382.8, D-calc=2.41 g cm(-3) MoK alpha, R-F=0.02; compound II, monoclinic, spacegroup=P2(1)/c (No. 14), a=10.240(1) b=6.375(3) Angstrom, 9.955(1) Angstrom, beta=117.3(1)degrees, V=577.4(1) Angstrom(3), Z=4, M=268.7, D-calc=3.09 g cm(-3) MoK alpha, R-F=0.03. These materials contain a high proportion of three-coordinated oxygens and [Fe2O9] dimeric units, besides other interesting structural features. The connectivity of Fe2O9 is entirely different in the two materials resulting in the formation of a continuous chain of Fe-O-Fe in II. The phosphate-oxalate containing the amine, I, forms well-defined channels. Magnetic susceptibility measurements show Fen to be in the high-spin state (t(2g)(4)e(g)(2)) in II, and in the intermediate-spin state (t(2g)(5)e(g)(1)) in I.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Gibbs' energy change for the reaction, 3CoO (r.s.)+1/2O2(g)→Co3O4(sp), has been measured between 730 and 1250 K using a solid state galvanic cell: Pt, CuO+Cu2O|(CaO)ZrO2|CoO+Co3O4,Pt. The emf of this cell varies nonlinearly with temperature between 1075 and 1150 K, indicating a second or higher order phase transition in Co3O4around 1120 (±20) K, associated with an entropy change of ∼43 Jmol-1K-1. The phase transition is accompanied by an anomalous increase in lattice parameter and electrical conductivity. The cubic spinel structure is retained during the transition, which is caused by the change in CO+3 ions from low spin to high spin state. The octahedral site preference energy of CO+3 ion in the high spin state has been evaluated as -24.8 kJ mol-1. This is more positive than the value for CO+2 ion (-32.9 kJ mol-1). The cation distribution therefore changes from normal to inverse side during the phase transition. The transformation is unique, coupling spin unpairing in CO+3 ion with cation rearrangement on the spinel lattice, DTA in pure oxygen revealed a small peak corresponding to the transition, which could be differentiated from the large peak due to decomposition. TGA showed that the stoichiometry of oxide is not significantly altered during the transition. The Gibbs' energy of formation of Co3O4 from CoO and O2 below and above phase transition can be represented by the equations:ΔG0=-205,685+170.79T(±200) J mol-1(730-1080 K) and ΔG0=-157,235+127.53T(±200) J mol-1(1150-1250 K).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobalt (11) phthalocyanine (CoPc) molecules have been encapsulated within the supercage of zeolite-Y. The square-planar complex, being larger than the almost spherical cage, is forced to adopt a distorted geometry on encapsulation. A comparative spectroscopic and magnetic investigation of CoPc encapsulated in zeolite-Y and in the unencapsulated state is reported. These results supported by molecular modeling have been used to understand the nature and extent of the loss of planarity of CoPc on encapsulation. The encapsulated molecule is shown to be the trans-diprotonated species in which the center of inversion is lost due to distortions required to accommodate the square complex within the zeolite. Encapsulation also leads to an enhancement of the magnetic moment of the CoPc. This is shown to be a consequence of the nonplanar geometry of the encapsulated molecule resulting in an excited high-spin state being thermally accessible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-spin levels of 189Pt have been studied with the in-beam γ-spectroscopy method via the 176Yb(18O,5n) reaction at the beam energies of 88 and 95 MeV. The previously known νi-131/2 band has been confirmed, and its unfavored signature branch extended up to the 13/2+ state. Within the framework of the triaxial particle-rotor model, the νi-113/2 band is suggested to be associated with the 11/2[615] configuration, and to have triaxial deformation.

Relevância:

100.00% 100.00%

Publicador: