977 resultados para high light adaptation, back reactaion, inhibition, enzym, pH gradient
Resumo:
In the thin-film photovoltaic industry, to achieve a high light scattering in one or more of the cell interfaces is one of the strategies that allow an enhancement of light absorption inside the cell and, therefore, a better device behavior and efficiency. Although chemical etching is the standard method to texture surfaces for that scattering improvement, laser light has shown as a new way for texturizing different materials, maintaining a good control of the final topography with a unique, clean, and quite precise process. In this work AZO films with different texture parameters are fabricated. The typical parameters used to characterize them, as the root mean square roughness or the haze factor, are discussed and, for deeper understanding of the scattering mechanisms, the light behavior in the films is simulated using a finite element method code. This method gives information about the light intensity in each point of the system, allowing the precise characterization of the scattering behavior near the film surface, and it can be used as well to calculate a simulated haze factor that can be compared with experimental measurements. A discussion of the validation of the numerical code, based in a comprehensive comparison with experimental data is included.
Resumo:
Ambient light conditions affect the morphology of synaptic elements within the cone pedicle and modulate the spatial properties of the horizontal cell receptive field. We describe here that the effects of retinoic acid on these properties are similar to those of light adaptation. Intraorbital injection of retinoic acid into eyes of dark-adapted carp that subsequently were kept in complete darkness results in the formation of numerous spinules at the terminal dendrites of horizontal cells, a typical feature of light-adapted retinae. The formation of these spinules during light adaptation is impaired in the presence of citral, a competitive inhibitor of the dehydrogenase responsible for the generation of retinoic acid in vivo. Intracellularly recorded responses of horizontal cells from dark-adapted eyecup preparations superfused with retinoic acid reveal typical light-adapted spatial properties. Retinoic acid thus appears to act as a light-signaling modulator. Its activity appears not to be at the transcriptional level because its action was not blocked by actinomycin.
Resumo:
The human cone visual system maintains contrast sensitivity over a wide range of ambient illumination, a property known as light adaptation. The first stage in light adaptation is believed to take place at the first neural step in vision, within the long, middle, and short wavelength sensitive cone photoreceptors. To determine the properties of adaptation in primate outer retina, we measured cone signals in second-order interneurons, the horizontal cells, of the macaque monkey. Horizontal cells provide a unique site for studying early adaptational mechanisms; they are but one synapse away from the photoreceptors, and each horizontal cell receives excitatory inputs from many cones. Light adaptation occurred over the entire range of light levels evaluated, a luminance range of 15–1,850 trolands. Adaptation was demonstrated to be independent in each cone type and to be spatially restricted. Thus, in primates, a major source of sensitivity regulation occurs before summation of cone signals in the horizontal cell.
Resumo:
Recruitment of intracellular proteins to the plasma membrane is a commonly found requirement for the initiation of signal transduction events. The recently discovered pleckstrin homology (PH) domain, a structurally conserved element found in ∼100 signaling proteins, has been implicated in this function, because some PH domains have been described to be involved in plasma membrane association. Furthermore, several PH domains bind to the phosphoinositides phosphatidylinositol-(4,5)-bisphosphate and phosphatidylinositol-(3,4,5)-trisphosphate in vitro, however, mostly with low affinity. It is unclear how such weak interactions can be responsible for observed membrane binding in vivo as well as the resulting biological phenomena. Here, we investigate the structural and functional requirements for membrane association of cytohesin-1, a recently discovered regulatory protein of T cell adhesion. We demonstrate that both the PH domain and the adjacent carboxyl-terminal polybasic sequence of cytohesin-1 (c domain) are necessary for plasma membrane association and biological function, namely interference with Jurkat cell adhesion to intercellular adhesion molecule 1. Biosensor measurements revealed that phosphatidylinositol-(3,4,5)-trisphosphate binds to the PH domain and c domain together with high affinity (100 nM), whereas the isolated PH domain has a substantially lower affinity (2–3 μM). The cooperativity of both elements appears specific, because a chimeric protein, consisting of the c domain of cytohesin-1 and the PH domain of the β-adrenergic receptor kinase does not associate with membranes, nor does it inhibit adhesion. Moreover, replacement of the c domain of cytohesin-1 with a palmitoylation–isoprenylation motif partially restored the biological function, but the specific targeting to the plasma membrane was not retained. Thus we conclude that two elements of cytohesin-1, the PH domain and the c domain, are required and sufficient for membrane association. This appears to be a common mechanism for plasma membrane targeting of PH domains, because we observed a similar functional cooperativity of the PH domain of Bruton’s tyrosine kinase with the adjacent Bruton’s tyrosine kinase motif, a novel zinc-containing fold.
Resumo:
Recoverin is a heterogeneously acylated calcium-binding protein thought to regulate visual transduction. Its effect on the photoresponse was investigated by dialyzing the recombinant protein into truncated salamander rod outer segments. At high Ca2+ (Ca), myristoylated recoverin (Ca-recoverin) prolonged the recovery phase of the bright flash response but had less effect on the dim flash response. The prolongation of recovery had an apparent Kd for Ca of 13 μM and a Hill coefficient of 2. The prolongation was shown to be mediated by inhibition of rhodopsin deactivation. After a sudden imposed drop in Ca concentration, the effect of recoverin switched off with little lag. The myristoyl (C14:0) modification of recoverin increased its activity 12-fold, and the C12:0 or C14:2 acyl group gave similar effects. These experiments support the notion that recoverin mediates Ca-dependent inhibition of rhodopsin phosphorylation and thereby controls light-triggered phosphodiesterase activity, particularly at high light levels.
Resumo:
We analyzed the kinetics of nonphotochemical quenching of chlorophyll fluorescence (qN) in spinach (Spinacia oleracea) leaves, chloroplasts, and purified light-harvesting complexes. The characteristic biphasic pattern of fluorescence quenching in dark-adapted leaves, which was removed by preillumination, was evidence of light activation of qN, a process correlated with the de-epoxidation state of the xanthophyll cycle carotenoids. Chloroplasts isolated from dark-adapted and light-activated leaves confirmed the nature of light activation: faster and greater quenching at a subsaturating transthylakoid pH gradient. The light-harvesting chlorophyll a/b-binding complexes of photosystem II were isolated from dark-adapted and light-activated leaves. When isolated from light-activated leaves, these complexes showed an increase in the rate of quenching in vitro compared with samples prepared from dark-adapted leaves. In all cases, the quenching kinetics were fitted to a single component hyperbolic function. For leaves, chloroplasts, and light-harvesting complexes, the presence of zeaxanthin was associated with an increased rate constant for the induction of quenching. We discuss the significance of these observations in terms of the mechanism and control of qN.
Resumo:
Wild-type Arabidopsis plants, the starch-deficient mutant TL46, and the near-starchless mutant TL25 were evaluated by noninvasive in situ methods for their capacity for net CO2 assimilation, true rates of photosynthetic O2 evolution (determined from chlorophyll fluorescence measurements of photosystem II), partitioning of photosynthate into sucrose and starch, and plant growth. Compared with wild-type plants, the starch mutants showed reduced photosynthetic capacity, with the largest reduction occurring in mutant TL25 subjected to high light and increased CO2 partial pressure. The extent of stimulation of CO2 assimilation by increasing CO2 or by reducing O2 partial pressure was significantly less for the starch mutants than for wild-type plants. Under high light and moderate to high levels of CO2, the rates of CO2 assimilation and O2 evolution and the percentage inhibition of photosynthesis by low O2 were higher for the wild type than for the mutants. The relative rates of 14CO2 incorporation into starch under high light and high CO2 followed the patterns of photosynthetic capacity, with TL46 showing 31% to 40% of the starch-labeling rates of the wild type and TL25 showing less than 14% incorporation. Overall, there were significant correlations between the rates of starch synthesis and CO2 assimilation and between the rates of starch synthesis and cumulative leaf area. These results indicate that leaf starch plays an important role as a transient reserve, the synthesis of which can ameliorate any potential reduction in photosynthesis caused by feedback regulation.
Resumo:
Most plants have the ability to respond to fluctuations in light to minimize damage to the photosynthetic apparatus. A proteolytic activity has been discovered that is involved in the degradation of the major light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCII) when the antenna size of photosystem II is reduced upon acclimation of plants from low to high light intensities. This ATP-dependent proteolytic activity is of the serine or cysteine type and is associated with the outer membrane surface of the stroma-exposed thylakoid regions. The identity of the protease is not known, but it does not correspond to the recently identified chloroplast ATP-dependent proteases Clp and FtsH, which are homologs to bacterial enzymes. The acclimative response shows a delay of 2 d after transfer of the leaves to high light. This lag period was shown to be attributed to expression or activation of the responsible protease. Furthermore, the LHCII degradation was found to be regulated at the substrate level. The degradation process involves lateral migration of LHCII from the appressed to the nonappressed thylakoid regions, which is the location for the responsible protease. Phosphorylated LHCII was found to be a poor substrate for degradation in comparison with the unphosphorylated form of the protein. The relationship between LHCII degradation and other regulatory proteolytic processes in the thylakoid membrane, such as D1-protein degradation, is discussed.
Resumo:
The effect of light intensity on antioxidants, antioxidant enzymes, and chlorophyll content was studied in common bean (Phaseolus vulgaris L.) exposed to excess Mn. Leaves of bean genotypes contrasting in Mn tolerance were exposed to two different light intensities and to excess Mn; light was controlled by shading a leaflet with filter paper. After 5 d of Mn treatment ascorbate was depleted by 45% in leaves of the Mn-sensitive genotype ZPV-292 and by 20% in the Mn-tolerant genotype CALIMA. Nonprotein sulfhydryl groups and glutathione reductase were not affected by Mn or light treatment. Ten days of Mn-toxicity stress increased leaf ascorbate peroxidase activity of cv ZPV-292 by 78% in low light and by 235% in high light, and superoxide dismutase activity followed a similar trend. Increases of ascorbate peroxidase and superoxide dismutase activity observed in cv CALIMA were lower than those observed in the susceptible cv ZPV-292. The cv CALIMA had less ascorbate oxidation under excess Mn-toxicity stress. Depletion of ascorbate occurred before the onset of chlorosis in Mn-stressed plants, especially in cv ZPV-292. Lipid peroxidation was not detected in floating leaf discs of mature leaves exposed to excess Mn. Our results suggest that Mn toxicity may be mediated by oxidative stress, and that the tolerant genotype may maintain higher ascorbate levels under stress than the sensitive genotype.
Resumo:
Barley (Hordeum vulgare L.) plants were grown at different photon flux densities ranging from 100 to 1800 μmol m−2 s−1 in air and/or in atmospheres with reduced levels of O2 and CO2. Low O2 and CO2 partial pressures allowed plants to grow under high photosystem II (PSII) excitation pressure, estimated in vivo by chlorophyll fluorescence measurements, at moderate photon flux densities. The xanthophyll-cycle pigments, the early light-inducible proteins, and their mRNA accumulated with increasing PSII excitation pressure irrespective of the way high excitation pressure was obtained (high-light irradiance or decreased CO2 and O2 availability). These findings indicate that the reduction state of electron transport chain components could be involved in light sensing for the regulation of nuclear-encoded chloroplast gene expression. In contrast, no correlation was found between the reduction state of PSII and various indicators of the PSII light-harvesting system, such as the chlorophyll a-to-b ratio, the abundance of the major pigment-protein complex of PSII (LHCII), the mRNA level of LHCII, the light-saturation curve of O2 evolution, and the induced chlorophyll-fluorescence rise. We conclude that the chlorophyll antenna size of PSII is not governed by the redox state of PSII in higher plants and, consequently, regulation of early light-inducible protein synthesis is different from that of LHCII.
Resumo:
Previously, we identified a novel gene, pmgA, as an essential factor to support photomixotrophic growth of Synechocystis species PCC 6803 and reported that a strain in which pmgA was deleted grew better than the wild type under photoautotrophic conditions. To gain insight into the role of pmgA, we investigated the mutant phenotype of pmgA in detail. When low-light-grown (20 μE m−2 s−1) cells were transferred to high light (HL [200μE m−2 s−1]), pmgA mutants failed to respond in the manner typically associated with Synechocystis. Specifically, mutants lost their ability to suppress accumulation of chlorophyll and photosystem I and, consequently, could not modulate photosystem stoichiometry. These phenotypes seem to result in enhanced rates of photosynthesis and growth during short-term exposure to HL. Moreover, mixed-culture experiments clearly demonstrated that loss of pmgA function was selected against during longer-term exposure to HL, suggesting that pmgA is involved in acquisition of resistance to HL stress. Finally, early induction of pmgA expression detected by reverse transcriptase-PCR upon the shift to HL led us to conclude that pmgA is the first gene identified, to our knowledge, as a specific regulatory factor for HL acclimation.
Resumo:
Corn (Zea mays L.) root adaptation to pH 3.5 in comparison with pH 6.0 (control) was investigated in long-term nutrient solution experiments. When pH was gradually reduced, comparable root growth was observed irrespective of whether the pH was 3.5 or 6.0. After low-pH adaptation, H+ release of corn roots in vivo at pH 5.6 was about 3 times higher than that of control. Plasmalemma of corn roots was isolated for investigation in vitro. At optimum assay pH, in comparison with control, the following increases of the various parameters were caused by low-pH treatment: (a) hydrolytic ATPase activity, (b) maximum initial velocity and Michaelis constant (c) activation energy of H+-ATPase, (d) H+-pumping activity, (e) H+ permeability of plasmalemma, and (f) pH gradient across the membranes of plasmalemma vesicles. In addition, vanadate sensitivity remained unchanged. It is concluded that plasmalemma H+-ATPase contributes significantly to the adaptation of corn roots to low pH. A restricted net H+ release at low pH in vivo may be attributed to the steeper pH gradient and enhanced H+ permeability of plasmalemma but not to deactivation of H+-ATPase. Possible mechanisms responsible for adaptation of plasmalemma H+-ATPase to low solution pH during plant cultivation are discussed.
Resumo:
Experiments using planktonic organisms revealed that the balance of radiant energy and available nutrients regulated herbivore growth rates through their effects on abundance and chemical composition of primary producers. Both algae and herbivores were energy limited at low light/nutrient ratios, but both were nutrient limited at high light/nutrient ratios. Herbivore growth increased with increasing light intensity at low values of the light/nutrient ratio due to increases in algal biomass, but growth decreased with increasing light at a high light/nutrient ratio due to decreases in algal quality. Herbivore production therefore was maximal at intermediate levels of the light/nutrient ratio. The results contribute to an understanding of mass transfer mechanisms in ecosystems and illustrate the importance of integration of energy-based and material-based currencies in ecology.
Resumo:
Pumpkin leaves grown under high light (500-700 micromol of photons m-2.s-1) were illuminated under photon flux densities ranging from 6.5 to 1500 micromol.m-2.s-1 in the presence of lincomycin, an inhibitor of chloroplast protein synthesis. The illumination at all light intensities caused photoinhibition, measured as a decrease in the ratio of variable to maximum fluorescence. Loss of photosystem II (PSII) electron transfer activity correlated with the decrease in the fluorescence ratio. The rate constant of photoinhibition, determined from first-order fits, was directly proportional to photon flux density at all light intensities studied. The fluorescence ratio did not decrease if the leaves were illuminated in low light in the absence of lincomycin or incubated in darkness in the presence of lincomycin. The constancy of the quantum yield of photoinhibition under different photon flux densities strongly suggests that photoinhibition in vivo occurs by one dominant mechanism under all light intensities. This mechanism probably is not the acceptor side mechanism characterized in the anaerobic case in vitro. Furthermore, there was an excellent correlation between the loss of PSII activity and the loss of the D1 protein from thylakoid membranes under low light. At low light, photoinhibition occurs so slowly that inactive PSII centers with the D1 protein waiting to be degraded do not accumulate. The kinetic agreement between D1 protein degradation and the inactivation of PSII indicates that the turnover of the D1 protein depends on photoinhibition under both low and high light.
Resumo:
Elysia timida (Risso, 1818) colonizing the shallow waters of the Mar Menor Lagoon (Spain) exhibit a brown and a green morph. It was hypothesised that these morphs were the result of feeding preferentially on brown and green algae, respectively. E. timida and its potential food sources, Acetabularia acetabulum (Chlorophyta) and Halopteris filicina (Heterokontophyta) were collected by snorkelling during April 2010. Photosynthetic pigments were analysed by HPLC, photo-physiological parameters were estimated by PAM fluorometry and body colour was characterized by spectral reflectance. Digital photography was used to count the number and area of red spots (small red dots on the slug’s surface) on the parapodia of the 2 morphs. In the laboratory, green E. timida was fed with A. acetabulum cultured under 2 light treatments (high light, 600 µmol E m−2 s−1 and low light, 40 µmol E m−2 s−1), and digital photography was used to monitor colour alterations in E. timida. Spectral reflectance confirmed the colour differences, but both morphs showed a pigment composition similar to the green alga A. acetabulum and showed none of the pigments present in the brown alga H. filicina, neither immediately after collection of the slugs in situ, nor after the feeding experiment. A. acetabulum grown under high light intensity changed from green to brown colour and E. timida changed to brown colour when fed with high-light acclimated A. acetabulum. Thus, E. timida colour differences could not be attributed to feeding on different algae groups but was likely the result of feeding on A. acetabulum growing under different light intensities.