345 resultados para hadronic colliders
Resumo:
A search for resonances produced in 7 TeV proton-proton collisions and decaying into top-quark pairs is described. In this Letter events where the top-quark decay produces two massive jets with large transverse momenta recorded with the ATLAS detector at the Large Hadron Collider are considered. Two techniques that rely on jet substructure are used to separate top-quark jets from those arising from light quarks and gluons. In addition, each massive jet is required to have evidence of an associated bottom-quark decay. The data are consistent with the Standard Model, and limits can be set on the production cross section times branching fraction of a Z' boson and a Kaluza-Klein gluon resonance. These limits exclude, at the 95% credibility level, Z' bosons with masses 0.70-1.00 TeV as well as 1.28-1.32 TeV and Kaluza-Klein gluons with masses 0.70-1.62 TeV.
Resumo:
We show that nonperturbative effects are logarithmically enhanced for transverse-momentum-dependent observables such as qT spectra of electroweak bosons in hadronic collisions and jet broadening at e+e− colliders. This enhancement arises from the collinear anomaly, a mechanism characteristic for transverse observables, which induces logarithmic dependence on the hard scale in the product of the soft and collinear matrix elements. Our analysis is based on an operator product expansion and provides, for the first time, a systematic, model-independent way to study nonperturbative effects for this class of observables. For the case of jet broadening, we relate the leading correction to the nonperturbative shift of the thrust distribution.
Resumo:
The hadronic light-by-light contribution to the anomalous magnetic moment of the muon was recently analyzed in the framework of dispersion theory, providing a systematic formalism where all input quantities are expressed in terms of on-shell form factors and scattering amplitudes that are in principle accessible in experiment. We briefly review the main ideas behind this framework and discuss the various experimental ingredients needed for the evaluation of one- and two-pion intermediate states. In particular, we identify processes that in the absence of data for doubly-virtual pion–photon interactions can help constrain parameters in the dispersive reconstruction of the relevant input quantities, the pion transition form factor and the helicity partial waves for γ⁎γ⁎→ππ.
Resumo:
Recently, it was shown that insertions of hadronic vacuum polarization at O(α4) generate non-negligible effects in the calculation of the anomalous magnetic moment of the muon. This result raises the question if other hadronic diagrams at this order might become relevant for the next round of g−2 measurements as well. In this note we show that a potentially enhanced such contribution, hadronic light-by-light scattering in combination with electron vacuum polarization, is already sufficiently suppressed.
Resumo:
Based on dispersion theory, we present a formalism for a model-independent evaluation of the hadronic light-by-light contribution to the anomalous magnetic moment of the muon. In particular, we comment on the definition of the pion pole in this framework and provide a master formula that relates the effect from ππ intermediate states to the partial waves for the process γ * γ * → ππ. All contributions are expressed in terms of on-shell form factors and scattering amplitudes, and as such amenable to an experimental determination.
Resumo:
We show how to avoid unnecessary and uncontrolled assumptions usually made in the literature about soft SU(3) flavor symmetry breaking in determining the two-flavor nucleon matrix elements relevant for direct detection of weakly interacting massive particles (WIMPs). Based on SU(2) chiral perturbation theory, we provide expressions for the proton and neutron scalar couplings fp,nu and fp,nd with the pion-nucleon σ term as the only free parameter, which should be used in the analysis of direct detection experiments. This approach for the first time allows for an accurate assessment of hadronic uncertainties in spin-independent WIMP-nucleon scattering and for a reliable calculation of isospin-violating effects. We find that the traditional determinations of Vfpu−fnu and fpd−fnd are off by a factor of 2.
Resumo:
The largest uncertainties in the Standard Model calculation of the anomalous magnetic moment of the muon (ɡ − 2)μ come from hadronic contributions. In particular, it can be expected that in a few years the subleading hadronic light-by-light (HLbL) contribution will dominate the theory uncertainty. We present a dispersive description of the HLbL tensor. This new, model-independent approach opens up an avenue towards a data-driven determination of the HLbL contribution to the (ɡ − 2)μ.
Resumo:
A recently proposed dispersive approach to hadronic light-by-light is described.
Resumo:
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton-proton collision data at s√=8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t~→tχ~01 or t~→bχ~±1→bW(∗)χ~01, where χ~01 (χ~±1) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t~→tχ~01. For a branching fraction of 100%, top squark masses in the range 270-645 GeV are excluded for χ~01 masses below 30 GeV. For a branching fraction of 50% to either t~→tχ~01 or t~→bχ~±1, and assuming the χ~±1 mass to be twice the χ~01 mass, top squark masses in the range 250-550 GeV are excluded for χ~01 masses below 60 GeV.
Resumo:
In this paper we make a further step towards a dispersive description of the hadronic light-by-light (HLbL) tensor, which should ultimately lead to a data-driven evaluation of its contribution to (g − 2) μ . We first provide a Lorentz decomposition of the HLbL tensor performed according to the general recipe by Bardeen, Tung, and Tarrach, generalizing and extending our previous approach, which was constructed in terms of a basis of helicity amplitudes. Such a tensor decomposition has several advantages: the role of gauge invariance and crossing symmetry becomes fully transparent; the scalar coefficient functions are free of kinematic singularities and zeros, and thus fulfill a Mandelstam double-dispersive representation; and the explicit relation for the HLbL contribution to (g − 2) μ in terms of the coefficient functions simplifies substantially. We demonstrate explicitly that the dispersive approach defines both the pion-pole and the pion-loop contribution unambiguously and in a model-independent way. The pion loop, dispersively defined as pion-box topology, is proven to coincide exactly with the one-loop scalar QED amplitude, multiplied by the appropriate pion vector form factors.
Resumo:
The largest uncertainties in the Standard Model calculation of the anomalous magnetic moment of the muon (g − 2)μ come from hadronic contributions. In particular, it can be expected that in a few years the subleading hadronic light-by-light (HLbL) contribution will dominate the theory uncertainty. We present a dispersive description of the HLbL tensor, which is based on unitarity, analyticity, crossing symmetry, and gauge invariance. Such a model-independent Approach opens up an avenue towards a data-driven determination of the HLbL contribution to the (g − 2)μ.