965 resultados para ground reaction vector technique
Resumo:
Twelve participants ran (9 km . h(-1)) to test two types of running shoes: replica and original shoes. Ground reaction force, plantar pressure and electromyographic activity were recorded. The shoes were tested randomly and on different days. Comparisons between the two experimental conditions were made by analysis of variance (ANOVA) test (P <= 0.05). The time to first peak, loading rate of the first peak and impulse of the first 75 ms of stance were significantly different between the shoes (P <= 0.05), revealing an increase of impact forces for the replica shoes. The peak plantar pressure values were significantly higher (P <= 0.05) when wearing replica shoes. During running, the contact area was significantly smaller (P <= 0.05) for the replica shoe. The electromyographic activity of the analysed muscles did not show changes between the two shoes in running. These findings suggest that the use of replica running shoes can increase the external load applied to the human body, but may not change the muscle activity pattern during locomotion. This new mechanical situation may increase the risk of injuries in these movements.
Resumo:
Objective Previous studies indicate that flexible footwear, which mimics the biomechanics of walking barefoot, results in decreased knee loads in patients with knee osteoarthritis (OA) during walking. However, the effect of flexible footwear on other activities of daily living, such as descending stairs, remains unclear. Our objective was to evaluate the influence of inexpensive and minimalist footwear (Moleca) on knee adduction moment (KAM) during stair descent of elderly women with and without knee OA. Methods. Thirty-four elderly women were equally divided into an OA group and a control group (CG). Stair descent was evaluated in barefoot condition, while wearing the Moleca, and while wearing heeled shoes. Kinematics and ground reaction forces were measured to calculate KAM by using inverse dynamics. Results. The OA group experienced a higher KAM during midstance under the barefoot condition (233.3%; P = 0.028), the Moleca (379.2%; P = 0.004), and heeled shoes (217.6%; P = 0.007). The OA group had a similar knee load during early, mid, and late stance with the Moleca compared with the barefoot condition. Heeled shoes increased the knee loads during the early-stance (versus barefoot [16.7%; P < 0.001] and versus the Moleca [15.5%; P < 0.001]), midstance (versus barefoot [8.6%; P = 0.014] and versus the Moleca [9.5%; P = 0.010]), and late-stance phase (versus barefoot [10.6%; P = 0.003] and versus the Moleca [9.2%; P < 0.001]). In the CG, the Moleca produced a knee load similar to the barefoot condition only during the early-stance phase. Conclusion. Besides the general foot protection, the inexpensive and minimalist footwear contributes to decreasing knee loads in elderly women with OA during stair descent. The loads are similar to the barefoot condition and effectively decreased when compared with heeled shoes.
Resumo:
O objetivo do presente estudo foi investigar a contribuição dos parâmetros biomecânicos para o desempenho do salto vertical com contramovimento (SV) e SV precedido de corrida (SVcorrida) em 19 jogadoras da seleção brasileira adulta de basquetebol feminino (26,2 ± 4,7 anos; 1,81 ± 0,07 m; 75,6 ± 12,6 kg; 20,4 ± 6,0% de gordura). Foram considerados os picos de força passiva (PFPa) e propulsão (PFP), tempo para alcance dos picos de força passiva (TPFPa) e propulsão (TPFP), "load rate" (LR), taxa de desenvolvimento de força (TDF), tempo de fase excêntrica (Texc) e concêntrica (Tcon). A análise de componentes principais revelou que 50,86% da altura de SV foi explicada por PFPa, TPFPa, LR, Texc e TPFP, e que 43,28% de SVcorrida foi explicada por PFPa, TPFPa, LR, PFP. Esses resultados sugerem que parâmetros temporais parecem contribuir de maneira mais significativa para o desempenho de salto, porém diferentes tipos de salto podem demandar comportamentos distintos de parâmetros biomecânicos.
Resumo:
BACKGROUND Joint hypermobility is known to be associated with joint and muscle pain, joint instability and osteoarthritis. Previous work suggested that those individuals present an altered neuromuscular behavior during activities such as level walking. Therefore, the aim of this study was to explore the differences in ground reaction forces, temporal parameters and muscle activation patterns during gait between normomobile and hypermobile women, including symptomatic and asymptomatic hypermobile individuals. METHODS A total of 195 women were included in this cross-sectional study, including 67 normomobile (mean 24.8 [SD 5.4] years) and 128 hypermobile (mean 25.8 [SD 5.4] years), of which 56 were further classified as symptomatic and 47 as asymptomatic. The remaining 25 subjects could not be further classified. Ground reaction forces and muscle activation from six leg muscles were measured while the subjects walked at a self-selected speed on an instrumented walkway. Temporal parameters were derived from ground reaction forces and a foot accelerometer. The normomobile and hypermobile groups were compared using independent samples t-tests, whereas the normomobile, symptomatic and asymptomatic hypermobile groups were compared using one-way ANOVAs with Tukey post-hoc tests (significance level=0.05). FINDINGS Swing phase duration was higher among hypermobile (P=0.005) and symptomatic hypermobile (P=0.018) compared to normomobile women. The vastus medialis (P=0.049) and lateralis (P=0.030) and medial gastrocnemius (P=0.011) muscles showed higher mean activation levels during stance in the hypermobile compared to the normomobile group. INTERPRETATION Hypermobile women might alter their gait pattern in order to stabilize their knee joint.
Resumo:
OBJECTIVE: To compare the analgesic and anti-inflammatory effect of single doses of carprofen, etodolac, meloxicam, and butorphanol in dogs with induced acute synovitis (acute pain model) via kinetic gait analysis and orthopedic evaluation and examine measurement of serum C-reactive protein (CRP) concentration as an indicator of treatment efficacy. ANIMALS: 12 Beagles and 6 additional Beagles that were used only in serum CRP analyses. PROCEDURE: Acute synovitis was induced in right stifle joints of dogs via intra-articular injection of monosodium urate solution. Treatments included butorphanol (0.2 mg/kg, i.v.), carprofen (4 mg/kg, PO), etodolac (17 mg/kg, PO), or meloxicam (0.2 mg/kg, PO); control dogs received no treatment. The procedure was repeated (3-week intervals) until all dogs received all treatments including control treatment. Lameness was assessed on a biomechanical force platform and via orthopedic evaluations of the stifle joints; blood was collected to monitor serum CRP concentration. RESULTS: Compared with control dogs, treated dogs had significantly different vertical ground reaction forces and weight-bearing scores. Greatest improvement in lameness was observed in carprofen-treated dogs. Etodolac had the fastest onset of action. Compared with butorphanol treatment, only carprofen and etodolac were associated with significantly lower pain scores. An increase in serum CRP concentration was detected after intra-articular injection in all dogs; this change was similar among groups. CONCLUSIONS AND CLINICAL RELEVANCE: Carprofen, etodolac, and meloxicam had greater efficacy than butorphanol in relief of acute pain. Carprofen was most effective overall. In this acute pain model, serum CRP analysis was not useful to assess drug efficacy.
Resumo:
Generalized joint hypermobility (GJH) is a frequent entity in rheumatology with higher prevalence among women. It is associated with chronic widespread pain, joint dislocations, arthralgia, fibromyalgia and early osteoarthritis. Stair climbing is an important functional task and can induce symptoms in hypermobile persons. The aim of this study was to compare ground reaction forces (GRF) and muscle activity during stair climbing in women with and without GJH. A cross-sectional study of 67 women with normal mobility and 128 hypermobile women was performed. The hypermobile women were further divided into 56 symptomatic and 47 asymptomatic. GRFs were measured by force plates embedded in a six step staircase, as well as surface electromyography (EMG) of six leg muscles. Parameters derived from GRF and EMG were compared between groups using t-test and ANOVA. For GRF no significant differences were found. EMG showed lower activity for the quadriceps during ascent and lower activity for hamstrings and quadriceps during descent in hypermobile women. For symptomatic hypermobile women these differences were even more accentuated. The differences in EMG may point towards an altered movement pattern during stair climbing, aimed at avoiding high muscle activation. However, differences were small, since stair climbing seems to be not demanding.
Resumo:
Introduction . Compared to most equine horse breeds which are able to walk, trot and canter /gallop, the gait repertoire of the Icelandic horses additionally includes the lateral gait tölt and frequently also the pace. With respect to the tölt gait, special shoeing, saddling and riding techniques have been developed for Icelandic horses in order to enhance its expressiveness and regularity. Toes are left unnaturally long and heavy shoes and paddings, as well as weighted boots are used to enforce the individual gait predisposition. For the same reason, the rider is placed more caudally to the horse's centre of mass as compared to other riding techniques. The biomechanical impact of these methods on the health of the locomotor system has so far never been subject of systematic research. Objectives . The aims of the presented study are (1) to describe the kinetic and kinematic characteristics of the tölt performed on a treadmill, (2) to understand the mechanical consequences of shoeing manipulation (long hooves, weighted boots) on the loading and protraction movement of the limbs, as well as (3) to study the pressure distribution and effects on the gait pattern of 3 different saddle types used for riding Icelandic horses. Materials and methods . Gait analysis was carried out in 13 Icelandic horses at walk and at slow and medium tölting and trotting speeds on a high-speed treadmill instrumented for measuring vertical ground reaction forces as well as temporal and spatial gait variables. Kinematic data of horse, rider and saddle were measured simultaneously. Gait analysis was first carried out with high, long hooves (SH) without and in combination with weighted boots (ad aim (2)). Afterwards, horses were re-shod according to current horseshoeing standards (SN) and gait analysis was repeated (ad aims (1) and (2)). In a second trial, horses were additionally equipped with a pressure sensitive saddle mat and were ridden with a dressage-like saddle (SDres), an Icelandic saddle (Slcel) and a saddle cushion (SCush) in the standard saddle position (ad aim 3). Results and conclusions . Compared to trot at the same speed, tölting horses had a higher stride rate and lower stride impulses. At the tölt loading of the forelimbs was increased in form of higher peak vertical forces (Fzpeak) due to shorter relative stance durations (StDrel). Conversely, in the hindlimbs, longer StDrel resulted in lower Fzpeak. Despite the higher head-neck position at tölt, there was no measurable shift in weight to the hindlimbs. Footfall rhythm was in most horses laterally coupled at the tölt and frequently had a slight fourbeat and a very short suspension phase at trot; underlining the fact that performance of correct gaits in Icelandic horses needs special training. Gait performance as it is currently judged in competition could be improved using a shoeing with SH, resulting in a 21 ± 5 mm longer dorsal hoof wall, but also a weight gain of 273 ± 50 g at the distal limb due to heavier shoeing material. Compared to SN, SH led to a lower stride rate, a longer stride length and a higher, but not wider, forelimb protraction arc, which were also positively associated with speed. At the tölt, the footfall rhythm showed less tendency to lateral couplets and at the trot, the suspension phase was longer. However, on the long term, SH may have negative implications for the health of the palmar structures of the distal foot by increased limb impulses, higher torques at breakover (up to 20%); as well as peak vertical forces at faster speeds. Compared to the shoeing style, the saddle type had less influence on limb forces or movements. The slight weight shift to the rear with SCush and Slcel may be explained by the more caudal position of the rider relative to the horse's back. With SCush, pressure was highest under the cranial part of the saddle, whereas the saddles with trees had more pressure under the caudal area.
Resumo:
Aim. This study was focused on (i) detection of specific BVDV-antibodies within selected cattle farms, (ii) identification of persistently infected (PI) animals and (iii) genetic typing of selected BVDV isolates. Methods. RNA extraction, real-time polymerase chain reaction, ELISA technique, sequencing. Results. Specific BVDV-antibodies were detected in 713 of 1,059 analyzed samples (67.3 per cent). This number is in agreement with findings in many cattle herds around the world. However, the number of positive samples differed in the herds. While 57 samples out of 283 (20.1 per cent) were identified in the first herd, 400 out of 475 (84.2 per cent) and 256 out of 301 (85 per cent) animals were positive in the second and third herd. High number of animals with BVDV RNA was detected in all herds. The real-time PCR assay detected BVDV RNA in 5 of 1068 samples analyzed (0.5 per cent). 4 positive samples out of 490 (0.8 per cent) and 1 out of 301 (0.33 per cent) were found in the second and third herd. The genetic materials of BVDV were not found in the first herd. Data on the number of PI animals were in accord with serological findings in the cattle herds involved in our study. The genetic typing of viral isolates revealed that only BVDV, Type 1 viruses were present. The hylogenetic analysis confirmed two BVDV-1 subtypes, namely b and f and revealed that all 4 viruses from the second farm were typed as BVDV-1b and all of them were absolutely identical in 5’-UTR, but virus from the third farm was typed as BVDV-1f. Conclusion. Our results indicated that the BVDV infection is widespread in cattle herds in the eastern Ukraine, that requires further research and development of new approaches to improve the current situation.
Resumo:
The aim of this study was to examine the acute effects of endurance exercise on jumping and kicking performance in young soccer players. Twenty-one top-class young soccer players (16.1±0.2 years) performed a countermovement jump test and a maximal instep soccer kick test before and after running for 20 min on a treadmill at 80% of their individual maximum heart rate. Two force platforms were used to obtain the following parameters during the countermovement jump: jump height, maximum power, maximum power relative to body mass, maximum vertical ground reaction force, maximum vertical ground reaction force relative to body mass, and maximum vertical ground reaction force applied to each leg. Maximum vertical ground reaction force and maximum vertical ground reaction force relative to body mass applied to the support leg during the kicks were also calculated with a force platform. The kicking motion was recorded using a three-dimensional motion-capture system. Maximum velocity of the ball, maximum linear velocity of the toe, ankle, knee and hip, and linear velocity of the toe at ball contact during the kicks were calculated. Non-significant differences were found in the parameters measured during the countermovement jump and the maximal instep soccer kick test before and after running, suggesting that the jumping and kicking performances of top-class young soccer players were not significantly affected after 20 min treadmill running at 80% of their individual maximum heart rate.
Optimización de cimentaciones directas de medianería y esquina mediante modelos de elementos finitos
Resumo:
Existe un amplio catálogo de posibles soluciones para resolver la problemática de las zapatas de medianería así como, por extensión, las zapatas de esquina como caso particular de las anteriores. De ellas, las más habitualmente empleadas en estructuras de edificación son, por un lado, la utilización de una viga centradora que conecta la zapata de medianería con la zapata del pilar interior más próximo y, por otro, la colaboración de la viga de la primera planta trabajando como tirante. En la primera solución planteada, el equilibrio de la zapata de medianería y el centrado de la respuesta del terreno se consigue gracias a la colaboración del pilar interior con su cimentación y al trabajo a flexión de la viga centradora. La modelización clásica considera que se logra un centrado total de la reacción del terreno, con distribución uniforme de las tensiones de contacto bajo ambas zapatas. Este planteamiento presupone, por tanto, que la viga centradora logra evitar cualquier giro de la zapata de medianería y que el pilar puede, por ello, considerarse perfectamente empotrado en la cimentación. En este primer modelo, el protagonismo fundamental recae en la viga centradora, cuyo trabajo a flexión conduce frecuentemente a unas escuadrías y a unas cuantías de armado considerables. La segunda solución, plantea la colaboración de la viga de la primera planta, trabajando como tirante. De nuevo, los métodos convencionales suponen un éxito total en el mecanismo estabilizador del tirante, que logra evitar cualquier giro de la zapata de medianería, dando lugar a una distribución de tensiones también uniforme. Los modelos convencionales existentes para el cálculo de este tipo de cimentaciones presentan, por tanto, una serie de simplificaciones que permiten el cálculo de las mismas, por medios manuales, en un tiempo razonable, pero presentan el inconveniente de su posible alejamiento del comportamiento real de la cimentación, con las consecuencias negativas que ello puede suponer en el dimensionamiento de estos elementos estructurales. La presente tesis doctoral desarrolla un contraste de los modelos convencionales de cálculo de cimentaciones de medianería y esquina, mediante un análisis alternativo con modelos de elementos finitos, con el objetivo de poner de manifiesto las diferencias entre los resultados obtenidos con ambos tipos de modelización, analizar cuáles son las variables que más influyen en el comportamiento real de este tipo de cimentaciones y proponer un nuevo modelo de cálculo, de tipo convencional, más ajustado a la realidad. El proceso de investigación se desarrolla mediante una etapa experimental virtual que utiliza como modelo un pórtico tipo de edificación, ortogonal, de hormigón armado, con dos vanos y número variable de plantas. Tras identificar el posible giro de la cimentación como elemento clave en el comportamiento de las zapatas de medianería y de esquina, se adoptan como variables de estudio aquellas que mayor influencia puedan tener sobre el citado giro de las zapatas y sobre la rigidez del conjunto del elemento estructural. Así, se han estudiado luces de 3 m a 7 m, diferente número de plantas desde baja+1 hasta baja+4, resistencias del terreno desde 100 kN/m2 hasta 300 kN/m2, relaciones de forma de la zapata de medianería de 1,5 : 1 y 2 : 1, aumento y reducción de la cuantía de armado de la viga centradora y variación del canto de la viga centradora desde el mínimo canto compatible con el anclaje de la armadura de los pilares hasta un incremento del 75% respecto del citado canto mínimo. El conjunto de pórticos generados al aplicar las variables indicadas, se ha calculado tanto por métodos convencionales como por el método de los elementos finitos. Los resultados obtenidos ponen de manifiesto importantes discrepancias entre ambos métodos que conducen a importantes diferencias en el dimensionamiento de este tipo de cimentaciones. El empleo de los métodos tradicionales da lugar, por un lado, a un sobredimensionamiento de la armadura de la viga centradora y, por otro, a un infradimensionamiento, tanto del canto de la viga centradora, como del tamaño de la zapata de medianería y del armado de la viga de la primera planta. Finalizado el análisis y discusión de resultados, la tesis propone un nuevo método alternativo, de carácter convencional y, por tanto, aplicable a un cálculo manual en un tiempo razonable, que permite obtener los parámetros clave que regulan el comportamiento de las zapatas de medianería y esquina, conduciendo a un dimensionamiento más ajustado a las necesidades reales de este tipo de cimentación. There is a wide catalogue of possible solutions to solve the problem of party shoes and, by extension, corner shoes as a special case of the above. From all of them, the most commonly used in building structures are, on one hand, the use of a centering beam that connects the party shoe with the shoe of the nearest interior pillar and, on the other hand, the collaboration of the beam of the first floor working as a tie rod. In the first proposed solution, the balance of the party shoe and the centering of the ground response is achieved thanks to the collaboration of the interior pillar with his foundation along with the bending work of the centering beam. Classical modeling considers that a whole centering of the ground reaction is achieved, with uniform contact stress distribution under both shoes. This approach to the issue presupposes that the centering beam manages to avoid any rotation of the party shoe, so the pillar can be considered perfectly embedded in the foundation. In this first model, the leading role lies in the centering beam, whose bending work usually leads to important section sizes and high amounts of reinforced. The second solution, consideres the collaboration of the beam of the first floor, working as tie rod. Again, conventional methods involve a total success in the stabilizing mechanism of the tie rod, that manages to avoid any rotation of the party shoe, resulting in a stress distribution also uniform. Existing conventional models for calculating such foundations show, therefore, a series of simplifications which allow calculation of the same, by manual means, in a reasonable time, but have the disadvantage of the possible distance from the real behavior of the foundation, with the negative consequences this could bring in the dimensioning of these structural elements. The present thesis develops a contrast of conventional models of calculation of party and corner foundations by an alternative analysis with finite element models with the aim of bring to light the differences between the results obtained with both types of modeling, analysis which are the variables that influence the real behavior of this type of foundations and propose a new calculation model, conventional type, more adjusted to reality. The research process is developed through a virtual experimental stage using as a model a typical building frame, orthogonal, made of reinforced concrete, with two openings and variable number of floors. After identifying the possible spin of the foundation as the key element in the behavior of the party and corner shoes, it has been adopted as study variables, those that may have greater influence on the spin of the shoes and on the rigidity of the whole structural element. So, it have been studied lights from 3 m to 7 m, different number of floors from lower floor + 1 to lower floor + 4, máximum ground stresses from 100 kN/m2 300 kN/m2, shape relationships of party shoe 1,5:1 and 2:1, increase and decrease of the amount of reinforced of the centering beam and variation of the height of the centering beam from the minimum compatible with the anchoring of the reinforcement of pillars to an increase of 75% from the minimum quoted height. The set of frames generated by applying the indicated variables, is calculated both by conventional methods such as by the finite element method. The results show significant discrepancies between the two methods that lead to significant differences in the dimensioning of this type of foundation. The use of traditional methods results, on one hand, to an overdimensioning of the reinforced of the centering beam and, on the other hand, to an underdimensioning, both the height of the centering beam, such as the size of the party shoe and the reinforced of the beam of the first floor. After the analysis and discussion of results, the thesis proposes a new alternative method, conventional type and, therefore, applicable to a manual calculation in a reasonable time, that allows to obtain the key parameters that govern the behavior of party and corner shoes, leading to a dimensioning more adjusted to the real needings of this type of foundation.
Resumo:
Beijing, China street centerline vectors with road type attributes extracted from DigitalGlobe QuickBird CitySphere high-resolution (60cm) satellite imagery ortho mosaics.
Resumo:
Barcelona, Spain street centerline vectors with road type attributes extracted from DigitalGlobe QuickBird CitySphere high-resolution (60cm) satellite imagery ortho mosaics.
Resumo:
Hong Kong, China street centerline vectors with road type attributes extracted from DigitalGlobe QuickBird CitySphere high-resolution (60cm) satellite imagery ortho mosaics.
Resumo:
Berlin, Germany street centerline vectors with road type attributes extracted from DigitalGlobe QuickBird CitySphere high-resolution (60cm) satellite imagery ortho mosaics.
Resumo:
Madrid, Spain street centerline vectors with road type attributes extracted from DigitalGlobe QuickBird CitySphere high-resolution (60cm) satellite imagery ortho mosaics.