976 resultados para ground penetrating radar


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glacier thickness is an important factor in the course of glacier retreat in a warming climate. Thiese study data presents the results (point data) of GPR surveys on 66 Austrian mountain glaciers carried out between 1995 and 2014. The glacier areas range from 0.001 to 18.4 km**2, and their ice thickness has been surveyed with an average density of 36 points/km**2 . The glacier areas and surface elevations refer to the second Austrian glacier inventory (mapped between 1996 and 2002). According to the glacier state recorded in the second glacier inventory, the 64 glaciers cover an area of 223.3±3.6 km**3. Maps of glacier thickness have been calculated by Fischer and Kuhn (2013) with a mean thickness of 50±3 m and contain an glacier volume of 11.9±1.1 km**3. The mean maximum ice thickness is 119±5 m. The ice thickness measurements have been carried out with the transmitter of Narod and Clarke (1994) combined with restively loaded dipole antennas (Wu and King, 1965; Rose and Vickers, 1974) at central wavelengths of 6.5 (30 m antenna length) and 4.0 MHz (50 m antenna length). The signal was recorded trace by trace with an oscilloscope. 168 m/µs as used by Haeberli et al. (1982), Bauder (2001), and Narod and Clarke (1994), the signal velocity in air is assumed to be 300 m/µs. Details on the method can be are found in Fischer and Kuhn (2013), as well as Span et al. (2005) and Fischer et al. (2007).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The geometries of a catchment constitute the basis for distributed physically based numerical modeling of different geoscientific disciplines. In this paper results from ground-penetrating radar (GPR) measurements, in terms of a 3D model of total sediment thickness and active layer thickness in a periglacial catchment in western Greenland, is presented. Using the topography, thickness and distribution of sediments is calculated. Vegetation classification and GPR measurements are used to scale active layer thickness from local measurements to catchment scale models. Annual maximum active layer thickness varies from 0.3 m in wetlands to 2.0 m in barren areas and areas of exposed bedrock. Maximum sediment thickness is estimated to be 12.3 m in the major valleys of the catchment. A method to correlate surface vegetation with active layer thickness is also presented. By using relatively simple methods, such as probing and vegetation classification, it is possible to upscale local point measurements to catchment scale models, in areas where the upper subsurface is relatively homogenous. The resulting spatial model of active layer thickness can be used in combination with the sediment model as a geometrical input to further studies of subsurface mass-transport and hydrological flow paths in the periglacial catchment through numerical modelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During two field campaigns (Austral springs 2011 and 2012) the sedimentary architecture of a polar gravel-beach system at the western coast of Potter Peninsula (Area 1) was revealed using ground-penetrating radar (GPR, Geophysical Survey Systems, Inc. SIR-3000). 21 profiles were collected using a mono-static 200 MHz antenna operated in common offset mode. Trace increment was set to 0.05 m. A differential global-positioning system (dGPS, Leica GS09) was used to obtain topographical information along the GPR lines. GPR data are provided in RADAN-Format, dGPS coordinates are provided in ascii format; projection is UTM (WGS 84, zone 21S).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During two field campaigns (Austral springs 2011 and 2012) the sedimentary architecture of a polar gravel-beach system at the southwestern coast of Potter Peninsula (Area 2) was revealed using ground-penetrating radar (GPR, Geophysical Survey Systems, Inc. SIR-3000). 49 profiles were collected using a mono-static 200 MHz antenna operated in common offset mode. Trace increment was set to 0.05 m. A differential global-positioning system (dGPS, Leica GS09) was used to obtain topographical information along the GPR lines. GPR data are provided in RADAN-Format, dGPS coordinates are provided in ascii format; projection is UTM (WGS 84, zone 21S).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a compact lightweight impulse radar for radio-echo sounding of subsurface structures designed specifically for glaciological applications. The radar operates at frequencies between 10 and 75 MHz. Its main advantages are that it has a high signal-to-noise ratio and a corresponding wide dynamic range of 132 dB due mainly to its ability to perform real-time stacking (up to 4096 traces) as well as to the high transmitted power (peak voltage 2800 V). The maximum recording time window, 40 ?s at 100 MHz sampling frequency, results in possible radar returns from as deep as 3300 m. It is a versatile radar, suitable for different geophysical measurements (common-offset profiling, common midpoint, transillumination, etc.) and for different profiling set-ups, such as a snowmobile and sledge convoy or carried in a backpack and operated by a single person. Its low power consumption (6.6 W for the transmitter and 7.5 W for the receiver) allows the system to operate under battery power for mayor que7 hours with a total weight of menor que9 kg for all equipment, antennas and batteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The underground cellars that appear in different parts of Spain are part of an agricultural landscape dispersed, sometimes damaged, others at risk of disappearing. This paper studies the measurement and display of a group of wineries located in Atauta (Soria), in the Duero River corridor. It is a unique architectural complex, facing rising, built on a smooth hillock as shown in Fig. 1. These constructions are excavated in the ground. The access to the cave or underground cellar has a shape of a narrow tube or down gallery. Immediately after, this space gets wider. There, wine is produced and stored [1]. Observation and detection of the underground cellar, both on the outside and underground, it is essential to make an inventory of the rural patrimony [2]. The geodetection is a noninvasive technique, adequate to accurately locate buried structures in the ground. Works undertaken include topographic work with the LIDAR techniques and integration with data obtained by GNSS and GPR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ariebreen is a small (0.37 km2) valley glacier located in southern Spitsbergen. Our ground-penetrating radar surveys of the glacier show that it is less than 30 m thick on average, with a maximum thickness of 82 m, and it appears to be entirely cold. By analysing digital terrain models of the ice surface from different dates, we determine the area and volume changes during two periods, 1936-1990 and 1990-2007. The total ice volume of the glacier has decreased by 73% during the entire period 1936-2007, which is equivalent to a mean mass balance rate of -0.6190.17 m/yr w.eq. The glacier thinning rate has increased markedly between the first and second periods, from -0.5090.22 to -0.9590.17 m/yr w.eq.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of ongoing work within the SvalGlac project aimed to obtain a reliable estimate of the total ice volume of Svalbard glaciers and their potential contribution to sea level rise, in this contribution we present volume calculations, with detailed error estimates, for ten glaciers on western Nordenskiöld Land, central Spitsbergen, Svalbard. The volume estimates are based upon a dense net of GPR-retrieved ice thickness data collected over several field campaigns spanning the period 1999-2012, all of them except one within 2010-2012. The total area and volume of the ensemble are 113.38±0.09 km2 and 10.439±0.185 km3, respectively, while the individual areas, volumes and average ice thickness lie within 2.5-49.1 km2, 0.08-5.48 km3 and 29-108 m, respectively. The maximum recorded ice thickness, 265±15 m, corresponds to Fridtjovbreen, which has also the largest average thickness (108±1m). Available empirical formulae for Svalbard glaciers overestimate the total volume of these glaciers by 24% with respect to our calculation. On the basis of the pattern of scattering in the radargrams, we also analyse the hydrothermal structure of these glaciers. Nine out of ten are polythermal, while only one is entirely cold.