997 resultados para green gel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the societal awareness on sustainability is gaining momentum worldwide, the higher education sector is expected to take the lead in education, research and the promotion of sustainable development. Universities have the diversity of skills and knowledge to explore new concepts and issues, the academic freedom to offer unbiased observations, and the capacity to engage in experimentation for solutions. There is a global trend that universities have realized and responded to sustainability challenge. By adopting green technologies, buildings on university campuses have the potential to offer highly productive and green environments for a quality learning experience for students, while minimising environmental impacts. Despite the potential benefits and metaphorical link to sustainability, few universities have moved towards implementing Green Roof and Living Wall on campuses widely, which have had more successful applications in commercial and residential buildings. Few past research efforts have examined the fundamental barriers to the implementation of sustainable projects on campuses from organizational level. To address this deficiency, an on-going research project is undertaken by Queensland University of Technology in Australia. The research is aimed at developing a comprehensive framework to facilitate better decision making for the promotion of Green Roof and Living Wall application on campuses. It will explore and highlight organizational factors as well as investigate and emphasize project delivery issues. Also, the critical technical indicators for Green Roof and Living Wall implementation will be identified. The expected outcome of this research has the potential to enhance Green Roof and Living Wall delivery in Australian universities, as a vital step towards realizing sustainability in higher education sectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study provides a simple method for improving precision of x-ray computed tomography (CT) scans of irradiated polymer gel dosimetry. The noise affecting CT scans of irradiated gels has been an impediment to the use of clinical CT scanners for gel dosimetry studies. Method: In this study, it is shown that multiple scans of a single PAGAT gel dosimeter can be used to extrapolate a ‘zero-scan’ image which displays a similar level of precision to an image obtained by averaging multiple CT images, without the compromised dose measurement resulting from the exposure of the gel to radiation from the CT scanner. Results: When extrapolating the zero-scan image, it is shown that exponential and simple linear fits to the relationship between Hounsfield unit and scan number, for each pixel in the image, provides an accurate indication of gel density. Conclusions: It is expected that this work will be utilised in the analysis of three-dimensional gel volumes irradiated using complex radiotherapy treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between the environment and human rights has long been recognised. It is now largely accepted that a ‘good’ environment is a necessary precondition for the enjoyment of a wide range of human rights, including the right to health, the right to an adequate standard of living, and even the right to life. It has even been suggested that as humans we all possess a right to live in an environment of a certain standard, based on the intrinsic value of the natural world to all human beings. In this context much has been written regarding the important role that the environment plays in human lives. This paper looks at the flip-side of this discussion, and examines what human rights can do for the environment. It is argued that, while there are valid criticisms for linking environmental protection too strongly to human needs, there is nonetheless much to be gained from using human rights law as a framework to achieve environmental protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new stormwater quality improvement device (SQID) called ‘Green Gully’ has been designed and developed in this study with an aim to re-using stormwater for irrigating plants and trees. The main purpose of the Green Gully is to collect road runoff/stormwater, make it suitable for irrigation and provide an automated network system for watering roadside plants and irrigational areas. This paper presents the design and development of Green Gully along with experimental and computational investigations of the performance of Green Gully. Performance (in the form of efficiency, i.e. the percentage of water flow through the gully grate) was experimentally determined using a gully model in the laboratory first, then a three dimensional numerical model was developed and simulated to predict the efficiency of Green Gully as a function of flow rate. Computational Fluid Dynamics (CFD) code FLUENT was used for the simulation. GAMBIT was used for geometry creation and mesh generation. Experimental and simulation results are discussed and compared in this paper. The predicted efficiency was compared with the laboratory measured efficiency. It was found that the simulated results are in good agreement with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality assurance of stereotactic radiotherapy and radiosurgery treatments requires the use of small-field dose measurements that can be experimentally challenging. This study used Monte Carlo simulations to establish that PAGAT dosimetry gel can be used to provide accurate, high resolution, three-dimensional dose measurements of stereotactic radiotherapy fields. A small cylindrical container (4 cm height, 4.2 cm diameter) was filled with PAGAT gel, placed in the parietal region inside a CIRS head phantom, and irradiated with a 12 field stereotactic radiotherapy plan. The resulting three-dimensional dose measurement was read out using an optical CT scanner and compared with the treatment planning prediction of the dose delivered to the gel during the treatment. A BEAMnrc DOSXYZnrc simulation of this treatment was completed, to provide a standard against which the accuracy of the gel measurement could be gauged. The three dimensional dose distributions obtained from Monte Carlo and from the gel measurement were found to be in better agreement with each other than with the dose distribution provided by the treatment planning system's pencil beam calculation. Both sets of data showed close agreement with the treatment planning system's dose distribution through the centre of the irradiated volume and substantial disagreement with the treatment planning system at the penumbrae. The Monte Carlo calculations and gel measurements both indicated that the treated volume was up to 3 mm narrower, with steeper penumbrae and more variable out-of-field dose, than predicted by the treatment planning system. The Monte Carlo simulations allowed the accuracy of the PAGAT gel dosimeter to be verified in this case, allowing PAGAT gel to be utilised in the measurement of dose from stereotactic and other radiotherapy treatments, with greater confidence in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buildings are one of the most significant infrastructures in modern societies. The construction and operation of modern buildings consume a considerable amount of energy and materials, therefore contribute significantly to the climate change process. In order to reduce the environmental impact of buildings, various green building rating tools have been developed. In this paper, energy uses of the building sector in Australia and over the world are first reviewed. This is then followed by discussions on the development and scopes of various green building rating tools, with a particular focus on the Green Star rating scheme developed in Australia. It is shown that Green Star has significant implications on almost every aspect of the design of HVAC systems, including the selection of air handling and distribution systems, fluid handling systems, refrigeration systems, heat rejection systems and building control systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates energy saving potential of commercial building by living wall and green façade system using Envelope Thermal Transfer Value (ETTV) equation in Sub-tropical climate of Australia. Energy saving of four commercial buildings was quantified by applying living wall and green façade system to the west facing wall. A field experimental facility, from which temperature data of living wall system was collected, was used to quantify wall temperatures and heat gain under controlled conditions. The experimental parameters were accumulated with extensive data of existing commercial building to quantify energy saving. Based on temperature data of living wall system comprised of Australian native plants, equivalent temperature of living wall system has been computed. Then, shading coefficient of plants in green façade system has been included in mathematical equation and in graphical analysis. To minimize the air-conditioned load of commercial building, therefore to minimize the heat gain of commercial building, an analysis of building heat gain reduction by living wall and green façade system has been performed. Overall, cooling energy performance of commercial building before and after living wall and green façade system application has been examined. The quantified energy saving showed that only living wall system on opaque part of west facing wall can save 8-13 % of cooling energy consumption where as only green façade system on opaque part of west facing wall can save 9.5-18% cooling energy consumption of commercial building. Again, green façade system on fenestration system on west facing wall can save 28-35 % of cooling energy consumption where as combination of both living wall on opaque part of west facing wall and green façade on fenestration system on west facing wall can save 35-40% cooling energy consumption of commercial building in sub-tropical climate of Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates cooling energy performance of commercial building before and after green roof and living wall application based on integrated building heat gain model developed from Overall Thermal Transfer Value (OTTV) of building wall and steady state heat transfer process of roof in sub-tropical climate. Using the modelled equation and eQUEST energy simulation tool, commercial building envelope parameters and relevant heat gain parameters have been accumulated to analyse the heat gain and cooling energy consumption of commercial building. Real life commercial building envelope and air-conditioned load data for the sub-tropical climate zone have been collected and compared with the modelled analysis. Relevant temperature data required for living wall and green roof analysis have been collected from experimental setup comprised of both green roof and west facing living wall. Then, Commercial building heat flux and cooling energy performance before and after green roof and living wall application have been scrutinized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a mathematical model of the evaporation of colloidal sol droplets suspended within an atmosphere consisting of water vapour and air. The main purpose of this work is to investigate the causes of the morphologies arising within the powder collected from a spray dryer into which the precursor sol for Synroc™ is sprayed. The morphology is of significant importance for the application to storage of High Level Liquid Nuclear Waste. We begin by developing a model describing the evaporation of pure liquid droplets in order to establish a framework. This model is developed through the use of continuum mechanics and thermodynamic theory, and we focus on the specific case of pure water droplets. We establish a model considering a pure water vapour atmosphere, and then expand this model to account for the presence of an atmospheric gas such as air. We model colloidal particle-particle interactions and interactions between colloid and electrolyte using DLVO Theory and reaction kinetics, then incorporate these interactions into an expression for net interaction energy of a single particle with all other particles within the droplet. We account for the flow of material due to diffusion, advection, and interaction between species, and expand the pure liquid droplet models to account for the presence of these species. In addition, the process of colloidal agglomeration is modelled. To obtain solutions for our models, we develop a numerical algorithm based on the Control Volume method. To promote numerical stability, we formulate a new method of convergence acceleration. The results of a MATLAB™ code developed from this algorithm are compared with experimental data collected for the purposes of validation, and further analysis is done on the sensitivity of the solution to various controlling parameters.