267 resultados para granulometry
Resumo:
Colluvial deposits consisting of silts and loams were detected in several climatologically different areas of NE Tibet (3200-3700 m a.s.l.). Layering, distinct organic content and low content of coarse matter as well as location in the relief revealed an origin from low-energy slope erosion (hillwash). Underlying and intercalated paleosols were classified as Chernozems, Phaeozems, Regosols and Fluvisols. Fifteen radiocarbon datings predominant on charcoal from both colluvial layers and paleosols yielded ages between 8988 ± 66 and 3512 ± 56 uncal BP. Natural or anthropogenic factors could have been the triggers of the erosional processes derived. It remains unclear which reason was mainly responsible, due to controversial paleoclimatic and geomorphic records as well as insufficient archaeological knowledge from this region. Determinations of charcoal and fossil wood revealed the Holocene occurrence of tree species (spruce, juniper) for areas which nowadays have no trees or only few forest islands. Thus large areas of NE Tibet which are at present steppes and alpine pastures were forested in the past.
Resumo:
Panama Basin sediment surface coarse fractions are dominantly composed of planktonic foraminiferal remains. Textural studies of these coarse fractions by means of a large diameter settling tube system reveal characteristics grain size spectra with important modes at 2.0-2.25 phi, 2.3-2.45 phi, 2.5-2.75 phi, 3.0-33 phi, and 3.4-3.75 phi. The coarser modes consist of large Globoquadrina dutertrei and Globorotalia menardii shells, the finer ones of small planktonic foraminiferal species and of shell fragments of the larger species. Analyses of samples from the Carnegie Gap provide sufficient information such that the extent of the high energy environment close to the sill depth can be mapped; the textural analyses also seem to indicate south and northward flowing components of the bottom currents which transport particle assemblages with distinct textural characteristics. The samples bear evidence for large scale removal of calcareous fines from the crest of structural highs; the fines are then dumped on the flanks of these elevations.
Resumo:
Sediment cores, mainly push-box samples, from a channel system of the Kiel Bay are described. The channel system, of glacial and fluviatile origin, is important for the distribution of heavy, salt-rich water entering from the North Sea through the Great Belt, Sediment erosion and transport in the channels is due entirely to currents, because the bottom lies too deep for wave action. The sediments of these channels proude information about current velocities and their frequencies. Grain-size, minor sediment structures and thickness of the sediments vary remarkably. Nevertheless, for those parts of the channels where stronger currents occur, some typical features can be shown. These include: small thickness of the marine sediments, erosional effects upon the underlying sediments, and poor sorting of the sediments, whereby fine and coarse fractions are mixed very intensively. Besides strong currents which effect the bottom configuration and deposits in the Fehmarn Belt, there must exist longer periods of low current action upon the bottom, although current measurements show that current velocities higher than 50 cm/sec at some meters above the bottom occur frequently during the year. In the channel to the west of the southern mouth of Great Belt, coarse sediments were found only in elongate, deep throughs within the channels. This is believed to be due to an acceleration of the entering tongues of heavy water as they flow downslope into the throughs. Minor structures of two sediment cores were made visible by X-ray photographs. These showed that the mixing of sand and clayey material is due partly to bottom organisms and that the mud, which appears 'homogeneous' to the bare eye, is built up of fine wavy laminae which are also partly destroyed by boring animals. At another location in the channel system, there was found a thin finegrained layer of marine sediment resting upon peat. Palynological dating of the peat shows that very little older sediment could have been eroded. The current velocities, therefore, must be too low for the movement of coarse material and erosion, but too high to allow the Sedimentation of a lot of fine-grained material.
Resumo:
A Pliocene (2.6-3.5 Ma) age is determined from glacial sediments studied in a 20m long, 4 m deep trench excavated in Heidemann Valley, Vestfold Hills, East Antarctica. The age determination is based on a combined study of amino acid racemization, diatoms, foraminifera, and magnetic polarity, and supports earlier estimates of the age of the sedimentary section; all are beyond 14C range. Four till units are recognized and documented, and 16 subunits are identified. All are ascribed to deposition during a Late Pliocene glaciation that was probably the last time the entire Vestfold Hills was covered by an enlarged East Antarctic Ice Sheet (EAIS). Evidence for other more recent glacial events of the 'Vestfold Glaciation' may have been due to lateral expansion of the Sorsdal Glacier and limited expansion of the icesheet margin during the Last Glacial Maximum rather than a major expansion of the EAIS. The deposit appears to correlate with a marine deposition event recorded in Ocean Drilling Program Site 1166 in Prydz Bay, possibly with the Bardin Bluffs Formation of the Prince Charles Mountains and with part of the time represented in the ANDRILL AND-1B core in the Ross Sea.