887 resultados para gold and silver nanoparticles
Resumo:
Although silver nanoparticles (SN) have been investigated as an alternative to conventional antifungal drugs in the control of Candida-associated denture stomatitis, the antifungal activity of SN in combination with antifungal drugs against Candida biofilms remains unknown. Therefore, the aim of this study was to evaluate the antifungal efficacy of SN in combination with nystatin (NYT) or chlorhexidine digluconate (CHG) against Candida albicans and Candida glabrata biofilms. The drugs alone or combined with SN were applied on mature Candida biofilms (48 h), and after 24 h of treatment their antibiofilm activities were assessed by total biomass quantification (by crystal violet staining) and colony forming units enumeration. The structure of Candida biofilms was analysed by scanning electron microscopy (SEM) images. The data indicated that SN combined with either NYT or CHG demonstrated synergistic antibiofilm activity, and this activity was dependent on the species and on the drug concentrations used. SEM images showed that some drug combinations were able to disrupt Candida biofilms. The results of this study suggest that the combination of SN with NYT or CHG may have clinical implications in the treatment of denture stomatitis. However, further studies are needed before recommending the use of these drugs safely in clinical situations. © 2013 Blackwell Verlag GmbH.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present work reports on the thermo-optical study of germanate thin films doped with Au and Ag nanoparticles. Transmission Electron Microscopy images, UV-visible absorption and Micro-Raman scattering evidenced the presence of nanoparticles and the formation of collective excitations, the so called surface plasmons. Moreover, the effects of the metallic nanoparticles in the thermal properties of the films were observed. The thermal lens technique was proposed to evaluate the Thermal Diffusivity (D) of the samples. It furnishes superficial spatial resolution of about 100 mu m, so it is appropriate to study inhomogeneous samples. It is shown that D may change up to a factor 3 over the surface of a film because of the differences in the nanoparticles concentration distribution. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We describe work in which gold nanoparticles were formed in diamond-like carbon (DLC), thereby generating a Au-DLC nanocomposite. A high-quality, hydrogen-free DLC thin film was formed by filtered vacuum arc plasma deposition, into which gold nanoparticles were introduced using two different methods. The first method was gold ion implantation into the DLC film at a number of decreasing ion energies, distributing the gold over a controllable depth range within the DLC. The second method was co-deposition of gold and carbon, using two separate vacuum arc plasma guns with suitably interleaved repetitive pulsing. Transmission electron microscope images show that the size of the gold nanoparticles obtained by ion implantation is 3-5 nm. For the Au-DLC composite obtained by co-deposition, there were two different nanoparticle sizes, most about 2 nm with some 6-7 nm. Raman spectroscopy indicates that the implanted sample contains a smaller fraction of sp(3) bonding for the DLC, demonstrating that some sp(3) bonds are destroyed by the gold implantation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757029]
Resumo:
The potential use of alanine for the production of nanoparticles is presented here for the first time. Silver nanoparticles were synthesized using a simple green method, namely the thermal treatment of silver nitrate aqueous solutions with in-alanine. The latter compound was employed both as a reducing and a capping agent. Particles with average size equal to 7.5 nm, face-centered cubic crystalline structure, narrow size distribution, and spherical shape were obtained. Interaction between the silver ions present on the surface of the nanoparticles and the amine group of the DL-alanine molecule seems to be responsible for reduction of the silver ions and for the stability of the colloid. The bio-hybrid nanocomposite was used as an ESR dosimeter. The amount of silver nanoparticles in the nanocomposite was not sufficient to cause considerable loss of tissue equivalency. Moreover, the samples containing nanoparticles presented increased sensitivity and reduced energetic dependence as compared with pure DL-alanine, contributing to the construction of small-sized dosimeters. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The use of nanomaterials, including metallic as active fillers in polymeric nanocomposites for food packaging has been extensively investigated. Silver nanoparticles (AgNPs), in particular, have been exploited for technological applications as bactericidal agents. In this paper, AgNPs were incorporated into a hydroxypropyl methylcellulose (HPMC) matrix for applications as food packaging materials. The average sizes of the silver nanoparticles were 41 nm and 100 nm, respectively. Mechanical analyses and water vapor barrier properties of the HPMC/AgNPs nanocomposites were analysed. The best results were observed for films containing smaller (41 nm) AgNPs. The antibacterial properties of HPMC/AgNPs thin films were evaluated based on the diameter of inhibition zone in a disk diffusion test against Escherichia coli (E. coil) and Staphylococcus aureus (S. aureus). The disk diffusion studies revealed a greater bactericidal effectiveness for nanocomposites films containing 41 nm Ag nanoparticles. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Nanoparticulate silver coatings for orthopaedic implants promise to decrease postoperative infection rates. However, silver-induced cytotoxicity on bone cells has not been investigated in detail. This study investigated the cytotoxic effects of silver nano- and microparticles and Ag(+) on osteoblasts (OBs) and osteoclasts (OCs) and correlated their effects with the antibacterial efficacy on Staphylococcus epidermidis. Silver nanoparticles (50 nm) exhibited strong cytotoxic effects on OBs and OCs. Weak cytotoxic effects were observed for silver microparticles (3 μm). The cytotoxicity was primarily mediated by a size-dependent release of Ag(+). Antibacterial effects occurred at Ag(+) concentrations that were 2-4 times higher than those inducing cytotoxic effects. Such adverse effects on OB and OC survival may have deleterious effects on the biocompatibility of orthopaedic implants. Our study represents an important step toward the detailed investigation of orthopaedic implant with nanoparticulate silver coatings prior to their widespread clinical usage.
Resumo:
The research described in this dissertation is comprised of two major parts. The first part studied the effects of asymmetric amphiphilic end groups on the thermo-response of diblock copolymers of (oligo/di(ethylene glycol) methyl ether (meth)acrylates, OEGA/DEGMA) and the hybrid nanoparticles of these copolymers with a gold nanoparticle core. Placing the more hydrophilic end group on the more hydrophilic block significantly increased the cloud point compared to a similar copolymer composition with the end group placement reversed. For a given composition, the cloud point was shifted by as much as 28 °C depending on the placement of end groups. This is a much stronger effect than either changing the hydrophilic/hydrophobic block ratio or replacing the hydrophilic acrylate monomer with the equivalent methacrylate monomer. The temperature range of the coil-globule transition was also altered. Binding these diblock copolymers to a gold core decreased the cloud point by 5-15 °C and narrowed the temperature range of the coil-globule transition. The effects were more pronounced when the gold core was bound to the less hydrophilic block. Given the limited numbers of monomers that are approved safe for in vivo use, employing amphiphilic end group placement is a useful tool to tune a thermo-response without otherwise changing the copolymer composition. The second part of the dissertation investigated the production of value-added nanomaterials from two biorefinery “wastes”: lignin and peptidoglycan. Different solvents and spinning methods (melt-, wet-, and electro-spinning) were tested to make lignin/cellulose blended and carbonized fibers. Only electro-spinning yielded fibers having a small enough diameter for efficient carbonization ( Peptidoglycan (a bacterial cell wall material) was copolymerized with poly-(3-hydroxybutyrate), a common polyhydroxyalkanoate produced by bacteria with the objective of determining if a useful material could be obtained with a less rigorous work-up on harvesting polyhydroxyalkanoates. The copolyesteramide product having 25 wt.% peptidoglycan from a highly purified peptidoglycan increased thermal stability by 100-200 °C compared to the poly-(3-hydroxybutyrate) control, while a less pure peptidoglycan, harvested from B. megaterium (ATCC 11561), gave a 25-50 °C increase in thermal stability. Both copolymers absorbed more moisture than pure poly-(3-hydroxybutyrate). The results suggest that a less rigorously harvested and purified polyhydroxyalkanoate might be useful for some applications.
Resumo:
Charcoal has been known for a considerable length of time to have the property of recovering gold, silver, and copper from cyanide solutions of these metals. Quantitative data that may shed light on the mechanism of the removal of these metals is very limited except that charcoal in a form known as activated has the power to abstract gold and silver in considerable quantities from the above solutions.
Resumo:
BACKGROUND: Due to its antibacterial properties, silver (Ag) has been used in more consumer products than any other nanomaterial so far. Despite the promising advantages posed by using Ag-nanoparticles (NPs), their interaction with mammalian systems is currently not fully understood. An exposure route via inhalation is of primary concern for humans in an occupational setting. Aim of this study was therefore to investigate the potential adverse effects of aerosolised Ag-NPs using a human epithelial airway barrier model composed of A549, monocyte derived macrophage and dendritic cells cultured in vitro at the air-liquid interface. Cell cultures were exposed to 20 nm citrate-coated Ag-NPs with a deposition of 30 and 278 ng/cm2 respectively and incubated for 4 h and 24 h. To elucidate whether any effects of Ag-NPs are due to ionic effects, Ag-Nitrate (AgNO3) solutions were aerosolised at the same molecular mass concentrations. RESULTS: Agglomerates of Ag-NPs were detected at 24 h post exposure in vesicular structures inside cells but the cellular integrity was not impaired upon Ag-NP exposures. Minimal cytotoxicity, by measuring the release of lactate dehydrogenase, could only be detected following a higher concentrated AgNO3-solution. A release of pro-inflammatory markers TNF-alpha and IL-8 was neither observed upon Ag-NP and AgNO3 exposures as well as was not affected when cells were pre-stimulated with lipopolysaccharide (LPS). Also, an induction of mRNA expression of TNF-alpha and IL-8, could only be observed for the highest AgNO3 concentration alone or even significantly increased when pre-stimulated with LPS after 4 h. However, this effect disappeared after 24 h. Furthermore, oxidative stress markers (HMOX-1, SOD-1) were expressed after 4 h in a concentration dependent manner following AgNO3 exposures only. CONCLUSIONS: With an experimental setup reflecting physiological exposure conditions in the human lung more realistic, the present study indicates that Ag-NPs do not cause adverse effects and cells were only sensitive to high Ag-ion concentrations. Chronic exposure scenarios however, are needed to reveal further insight into the fate of Ag-NPs after deposition and cell interactions.
Resumo:
Owing to their antimicrobial properties, silver nanoparticles (NPs) are the most commonly used engineered nanomaterial for use in a wide array of consumer and medical applications. Many discussions are currently ongoing as to whether or not exposure of silver NPs to the ecosystem (i.e. plants and animals) may be conceived as harmful or not. Metallic silver, if released into the environment, can undergo chemical and biochemical conversion which strongly influence its availability towards any biological system. During this process, in the presence of moisture, silver can be oxidized resulting in the release of silver ions. To date, it is still debatable as to whether any biological impact of nanosized silver is relative to either its size, or to its ionic constitution. The aim of this review therefore is to provide a comprehensive, interdisciplinary overview--for biologists, chemists, toxicologists as well as physicists--regarding the production of silver NPs, its (as well as in their ionic form) chemical and biochemical behaviours towards/within a multitude of relative and realistic biological environments and also how such interactions may be correlated across a plethora of different biological organisms.