920 resultados para glycogen synthase
Resumo:
The brain has enormous anabolic needs during early postnatal development. This study presents multiple lines of evidence showing that endogenous brain insulin-like growth factor 1 (Igf1) serves an essential, insulin-like role in promoting neuronal glucose utilization and growth during this period. Brain 2-deoxy-d- [1-14C]glucose uptake parallels Igf1 expression in wild-type mice and is profoundly reduced in Igf1−/− mice, particularly in those structures where Igf1 is normally most highly expressed. 2-Deoxy-d- [1-14C]glucose is significantly reduced in synaptosomes prepared from Igf1−/− brains, and the deficit is corrected by inclusion of Igf1 in the incubation medium. The serine/threonine kinase Akt/PKB is a major target of insulin-signaling in the regulation of glucose transport via the facilitative glucose transporter (GLUT4) and glycogen synthesis in peripheral tissues. Phosphorylation of Akt and GLUT4 expression are reduced in Igf1−/− neurons. Phosphorylation of glycogen synthase kinase 3β and glycogen accumulation also are reduced in Igf1−/− neurons. These data support the hypothesis that endogenous brain Igf1 serves an anabolic, insulin-like role in developing brain metabolism.
Resumo:
Members of the Wnt family of signaling molecules are expressed differentially along the dorsal–ventral axis of the developing neural tube. Thus we asked whether Wnt factors are involved in patterning of the nervous system along this axis. We show that Wnt-1 and Wnt-3a, both of which are expressed in the dorsal portion of the neural tube, could synergize with the neural inducers noggin and chordin in Xenopus animal explants to generate the most dorsal neural structure, the neural crest, as determined by the expression of Krox-20, AP-2, and slug. Overexpression of Wnt-1 or Wnt-3a in the neuroectoderm of whole embryos led to a dramatic increase of slug and Krox-20-expressing cells, but the hindbrain expression of Krox-20 remained unaffected. Enlargement in the neural crest population could occur even when cell proliferation was inhibited. Wnt-5A and Wnt-8, neither of which is expressed in the dorsal neuroectoderm, failed to induce neural crest markers. Overexpression of glycogen synthase kinase 3, known to antagonize Wnt signaling, blocked the neural-crest-inducing activity of Wnt-3a in animal explants and inhibited neural crest formation in whole embryos. We suggest that Wnt-1 and Wnt-3a have a role in patterning the neural tube along its dorsoventral axis and function in the differentiation of the neural crest.
Resumo:
Lithium, one of the most effective drugs for the treatment of bipolar (manic-depressive) disorder, also has dramatic effects on morphogenesis in the early development of numerous organisms. How lithium exerts these diverse effects is unclear, but the favored hypothesis is that lithium acts through inhibition of inositol monophosphatase (IMPase). We show here that complete inhibition of IMPase has no effect on the morphogenesis of Xenopus embryos and present a different hypothesis to explain the broad action of lithium. Our results suggest that lithium acts through inhibition of glycogen synthase kinase-3 beta (GSK-3 beta), which regulates cell fate determination in diverse organisms including Dictyostelium, Drosophila, and Xenopus. Lithium potently inhibits GSK-3 beta activity (Ki = 2 mM), but is not a general inhibitor of other protein kinases. In support of this hypothesis, lithium treatment phenocopies loss of GSK-3 beta function in Xenopus and Dictyostelium. These observations help explain the effect of lithium on cell-fate determination and could provide insights into the pathogenesis and treatment of bipolar disorder.
Resumo:
The eukaryotic translation initiation factor 2 alpha (eIF2α) is part of the initiation complex that drives the initiator amino acid methionine to the ribosome, a crucial step in protein translation. In stress conditions such as virus infection, endoplasmic reticulum (ER) stress, amino acid or heme deficiency eIF2α can be phosphorylated and thereby inhibit global protein synthesis. This adaptive mechanism prevents protein accumulation and consequent cytotoxic effects. Heme-regulated eIF2α kinase (HRI) is a member of the eIF2α kinase family that regulates protein translation in heme deficiency conditions. Although present in all tissues, HRI is predominantly expressed in erythroid cells where it remains inactive in the presence of normal heme concentrations. In response to heme deficiency, HRI is activated and phosphorylates eIF2α decreasing globin synthesis. This mechanism is important to prevent accumulation of heme-free globin chains which cause ER stress and apoptosis. RNA sequencing data from our group showed that in human islets and in primary rat beta cells HRI is the most expressed eIF2α kinase compared to the other family members. Despite its high expression levels, little is known about HRI function in beta cells. The aim of this project is to identify the role of HRI in pancreatic beta cells. This was investigated taking a loss-of-function approach. HRI knock down (KD) by RNA interference induced beta cell apoptosis in basal condition. HRI KD potentiated the apoptotic effects of palmitate or proinflammatory cytokines, two in vitro models for type 2 and type 1 diabetes, respectively. Increased cytokine-induced apoptosis was also observed in HRI-deficient primary rat beta cells. Unexpectedly, we observed a mild increase in eIF2α phosphorylation in HRI-deficient cells. The levels of mRNA or protein expression of C/EBP homologous protein (CHOP) and activating transcription factor 4 (ATF4) were not modified. HRI KD cells have decreased spliced X-box binding protein 1 (XBP1s), an important branch of the ER stress response. However, overexpression of XBP1s by adenovirus in HRI KD cells did not protect from HRI siRNA-induced apoptosis. HRI deficiency decreased phosphorylation of Akt and its downstream targets glycogen synthase kinase 3 (GSK3), forkhead box protein O1 (FOXO1) and Bcl-2-associated death promoter (BAD). Overexpression of a constitutively active form of Akt by adenovirus in HRI-deficient beta cells partially decreased HRI KD-mediated apoptosis. Interestingly, BAD silencing protected from apoptosis caused by HRI deficiency. HRI silencing in beta cells also induced JNK activation. These results suggest an important role of HRI in beta cell survival through modulation of the Akt/BAD pathway. Thus, HRI may be an interesting target to modulate beta cell fate in diabetic conditions.
Resumo:
Endochondral bone is formed during an avascular period in an environment of low oxygen. Under these conditions, pluripotential mesenchymal stromal cells preferentially differentiate into chondrocytes and form cartilage. In this study, we investigated the hypothesis that oxygen tension modulates bone mesenchymal cell fate by altering the expression of genes that function to promote chondrogenesis. Microarray of RNA samples from ST2 cells revealed significant changes in 728 array elements (P < 0.01) in response to hypoxia. Real-time PCR on these RNA samples, and separate samples from C3H10T1/2 cells, revealed hypoxia-induced changes in the expression of additional genes known to be expressed by chondrocytes including Sox9 and its downstream targets aggrecan and Col2a. These changes were accompanied by the accumulation of mucopolysacharide as detected by alcian blue staining. To investigate the mechanisms responsible for upregulation of Sox9 by hypoxia, we determined the effect of hypoxia on HIF-1 alpha levels and Sox9 promoter activity in ST2 cells. Hypoxia increased nuclear accumulation of HIF-1 alpha and activated the Sox9 promoter. The ability of hypoxia to transactivate the Sox9 promoter was virtually abolished by deletion of HIF-1 alpha consensus sites within the proximal promoter. These findings suggest that hypoxia promotes the differentiation of mesenchymal cells along a chondrocyte pathway in part by activating Sox-9 via a HIF-1 alpha-dependent mechanism. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Tau is a major microtubule-associated protein of axons and is also the principal component of the paired helical filaments (PHFs) that comprise the neurofibrillary tangles found in Alzheimer's disease and other tauopathies. Besides phosphorylation of tau on serine and threonine residues in both normal tau and tau from neurofibrillary tangles, Tyr-18 was reported to be a site of phosphorylation by the Src-family kinase Fyn. We examined whether tyrosine residues other than Tyr-18 are phosphorylated in tau and whether other tyrosine kinases might phosphorylate tau. Using mass spectrometry, we positively identified phosphorylated Tyr-394 in PHF-tau from an Alzheimer brain and in human fetal brain tau. When wild-type human tau was transfected into fibroblasts or neuroblastoma cells, treatment with pervanadate caused tau to become phosphorylated on tyrosine by endogenous kinases. By replacing each of the five tyrosines in tau with phenylalanine, we identified Tyr-394 as the major site of tyrosine phosphorylation in tau. Tyrosine phosphorylation of tau was inhibited by PP2 (4-amino-5-(4-chlorophenyl-7-(t-butyl) pyrazolo[3,4-d] pyrimidine), which is known to inhibit Src-family kinases and c-Abl. Cotransfection of tau and kinases showed that Tyr-18 was the major site for Fyn phosphorylation, but Tyr-394 was the main residue for Abl. In vitro, Abl phosphorylated tau directly. Abl could be coprecipitated with tau and was present in pretangle neurons in brain sections from Alzheimer cases. These results show that phosphorylation of tau on Tyr-394 is a physiological event that is potentially part of a signal relay and suggest that Abl could have a pathogenic role in Alzheimer's disease.
Resumo:
Proliferation of activated hepatic stellate cells (HSC) is an important event in the development of hepatic fibrosis. Insulin-like growth factor-1 (IGF-1) has been shown to be mitogenic for HSC, but the intracellular signaling pathways involved have not been fully characterized. Thus, the aims of the current study were to examine the roles of the extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (P13-K) and p70-S6 kinase (p70-S6-K) signaling pathways in IGF-1- and platelet-derived growth factor (PDGF)-induced mitogenic signaling of HSC and to examine the potential crosstalk between these pathways. Both IGF-1 and PDGF increased ERK, P13-K and p70-S6-K activity. When evaluating potential crosstalk between these signaling pathways, we observed that P13-K is required for p70-S6-K activation by IGF-1 and PDGF, and is partially responsible for PDGF-induced ERK activation. PDGF and IGF-1 also increased the levels of cyclin D1 and phospho-glycogen synthase kinase-30. Coordinate activation of ERK, P13-K and p70-S6-K is important for perpetuating the activated state of HSC during fibrogenesis.
Resumo:
Carbon dioxide (CO(2)) is increasingly being appreciated as an intracellular signaling molecule that affects inflammatory and immune responses. Elevated arterial CO(2) (hypercapnia) is encountered in a range of clinical conditions, including chronic obstructive pulmonary disease, and as a consequence of therapeutic ventilation in acute respiratory distress syndrome. In patients suffering from this syndrome, therapeutic hypoventilation strategy designed to reduce mechanical damage to the lungs is accompanied by systemic hypercapnia and associated acidosis, which are associated with improved patient outcome. However, the molecular mechanisms underlying the beneficial effects of hypercapnia and the relative contribution of elevated CO(2) or associated acidosis to this response remain poorly understood. Recently, a role for the non-canonical NF-?B pathway has been postulated to be important in signaling the cellular transcriptional response to CO(2). In this study, we demonstrate that in cells exposed to elevated CO(2), the NF-?B family member RelB was cleaved to a lower molecular weight form and translocated to the nucleus in both mouse embryonic fibroblasts and human pulmonary epithelial cells (A549). Furthermore, elevated nuclear RelB was observed in vivo and correlated with hypercapnia-induced protection against LPS-induced lung injury. Hypercapnia-induced RelB processing was sensitive to proteasomal inhibition by MG-132 but was independent of the activity of glycogen synthase kinase 3ß or MALT-1, both of which have been previously shown to mediate RelB processing. Taken together, these data demonstrate that RelB is a CO(2)-sensitive NF-?B family member that may contribute to the beneficial effects of hypercapnia in inflammatory diseases of the lung.
Resumo:
Craniopharyngiomas and pituitary adenomas are both tumors of the hypothalamic and pituitary region, respectively that are frequently associated with endocrine defects either because of direct involvement of hormone producing cells (most pituitary tumors) or because of secondary defects due to disturbance of hypothalamic function (some pituitary tumors and craniopharyngiomas). Some studies suggest that mutant β-catenin gene cells in craniopharyngiomas and pituitary adenomas contribute to their tumorigenesis. DNA was extracted from 73 cranial tumors and subjected to polymerase chain reaction (PCR) with previously described primers encompassing glycogen synthase kinase-3β phosphorylation sites of the β-catenin gene. Sequenced PCR products for possible β-catenin gene mutations showed a total of 7/43 alterations in adamantinomatous craniopharyngioma-derived DNA samples. Two previously described β-catenin mutations in codon 33 TCT(Ser) > TGT(Cys) and codon 37 TCT(Ser) > TTT(Phe), whereas three novel mutations in codon 41 ACC(Thr) > ATC(Ile), codon 33 TCT(Ser) > TAT(Tyr) and codon 32 GAC(Asp) > AAC(Asn) were observed. None of the 22 pituitary adenomas and the eight papillary craniopharyngiomas analyzed presented any sequence alterations. These findings demonstrate an association between β-catenin gene alterations and craniopharyngiomas of the adamantinomatous type. Since this gene product is involved with development, these results suggest that β-catenin mutations may contribute to the initiation and subsequent growth of congenital craniopharyngiomas. © Springer 2005.
Resumo:
Dictyostelium discoideum is a simple model widely used to study many cellular functions, including differentiation, gene regulation, cellular trafficking and directional migration. Adaptation mechanisms are essential in the regulation of these cellular processes. The misregulation of adaptation components often results in persistent activation of signaling pathways and aberrant cellular responses. Studying adaptation mechanisms regulating cellular migration will be crucial in the treatment of many pathological conditions in which motility plays a central role, such as tumor metastasis and acute inflammation. I will describe two adaptation mechanisms regulating directional migration in Dictyostelium cells. The Extracellular signal Regulated Kinase 2 (ERK2) plays an essential role in Dictyostelium cellular migration. ERK2 stimulates intracellular cAMP accumulation in chemotaxing cells. Aberrant ERK2 regulation results in aberrant cAMP levels and defective directional migration. The MAP Phosphatase with Leucine-rich repeats (MPL1) is crucial for ERK2 adaptation. Cells lacking, MPL1 (mpl1- cells) displayed higher pre-stimulus and persistent post-stimulus ERK2 phosphorylation, defective cAMP production and reduced cellular migration. Reintroduction of a full length Mpl1 into mpl1- cells restored aggregation, ERK2 regulation, random and directional motility, and cAMP production similar to wild type cells (Wt). These results suggest Mpl1 is essential for proper regulation of ERK2 phosphorylation and optimal motility in Dictyostelium cells. Cellular polarization in Dictyostelium cells in part is regulated by the activation of the AGC-related kinase Protein Kinase Related B1 (PKBR1). The PP2A regulatory subunit, B56, and the Glycogen Synthase Kinase 3 (GSK3) are necessary for PKBR1 adaptation in Dictyostelium cells. Cells lacking B56, psrA-cells, exhibited high basal and post-stimulus persistent phosphorylation of PKBR1, increased phosphorylation of PKBR1 substrates, and aberrant motility. PKBR1 adaptation is also regulated by the GSK3. When the levels of active GSK3 are reduced in Wt and psrA- cells, high basal levels of phosphorylated PKBR1 were observed, in a Ras dependent, but B56 independent mechanism. Altogether, PKBR1 adaptation is regulated by at least two independent mechanisms: one by GSK3 and another by PP2A/B56.
Resumo:
One aspect of the function of the beta-arrestins is to serve as scaffold or adapter molecules coupling G-protein coupled receptors (GPCRs) to signal transduction pathways distinct from traditional second messenger pathways. Here we report the identification of Dishevelled 1 and Dishevelled 2 (Dvl1 and Dvl2) as beta-arrestin1 (betaarr1) interacting proteins. Dvl proteins participate as key intermediates in signal transmission from the seven membrane-spanning Frizzled receptors leading to inhibition of glycogen synthase kinase-3beta (GSK-3beta), stabilization of beta-catenin, and activation of the lymphoid enhancer factor (LEF) transcription factor. We find that phosphorylation of Dvl strongly enhances its interaction with betaarr1, suggesting that regulation of Dvl phosphorylation and subsequent interaction with betaarr1 may play a key role in the activation of the LEF transcription pathway. Because coexpression of the Dvl kinases, CK1epsilon and PAR-1, with Dvl synergistically activates LEF reporter gene activity, we reasoned that coexpression of betaarr1 with Dvl might also affect LEF-dependent gene activation. Interestingly, whereas betaarr1 or Dvl alone leads to low-level stimulation of LEF (2- to 5-fold), coexpression of betaarr1 with either Dvl1 or Dvl2 leads to a synergistic activation of LEF (up to 16-fold). Additional experiments with LiCl as an inhibitor of GSK-3beta kinase activity indicate that the step affected by betaarr1 is upstream of GSK-3beta and most likely at the level of Dvl. These results identify betaarr1 as a regulator of Dvl-dependent LEF transcription and suggest that betaarr1 might serve as an adapter molecule that can couple Frizzled receptors and perhaps other GPCRs to these important transcription pathways.
Resumo:
Dictyostelium discoideum is a simple model widely used to study many cellular functions, including differentiation, gene regulation, cellular trafficking and directional migration. Adaptation mechanisms are essential in the regulation of these cellular processes. The misregulation of adaptation components often results in persistent activation of signaling pathways and aberrant cellular responses. Studying adaptation mechanisms regulating cellular migration will be crucial in the treatment of many pathological conditions in which motility plays a central role, such as tumor metastasis and acute inflammation. I will describe two adaptation mechanisms regulating directional migration in Dictyostelium cells. The Extracellular signal Regulated Kinase 2 (ERK2) plays an essential role in Dictyostelium cellular migration. ERK2 stimulates intracellular cAMP accumulation in chemotaxing cells. Aberrant ERK2 regulation results in aberrant cAMP levels and defective directional migration. The MAP Phosphatase with Leucine-rich repeats (MPL1) is crucial for ERK2 adaptation. Cells lacking, MPL1 (mpl1- cells) displayed higher pre-stimulus and persistent post-stimulus ERK2 phosphorylation, defective cAMP production and reduced cellular migration. Reintroduction of a full length Mpl1 into mpl1- cells restored aggregation, ERK2 regulation, random and directional motility, and cAMP production similar to wild type cells (Wt). These results suggest Mpl1 is essential for proper regulation of ERK2 phosphorylation and optimal motility in Dictyostelium cells. Cellular polarization in Dictyostelium cells in part is regulated by the activation of the AGC-related kinase Protein Kinase Related B1 (PKBR1). The PP2A regulatory subunit, B56, and the Glycogen Synthase Kinase 3 (GSK3) are necessary for PKBR1 adaptation in Dictyostelium cells. Cells lacking B56, psrA-cells, exhibited high basal and post-stimulus persistent phosphorylation of PKBR1, increased phosphorylation of PKBR1 substrates, and aberrant motility. PKBR1 adaptation is also regulated by the GSK3. When the levels of active GSK3 are reduced in Wt and psrA- cells, high basal levels of phosphorylated PKBR1 were observed, in a Ras dependent, but B56 independent mechanism. Altogether, PKBR1 adaptation is regulated by at least two independent mechanisms: one by GSK3 and another by PP2A/B56.
Resumo:
Retinitis Pigmentosa (RP) is the name given to a group of hereditary diseases causing progressive and degenerative blindness. RP affects over 1 in 4000 individuals, making it the most prevalent inherited retinal disease worldwide, yet currently there is no cure. In 2011, our group released a paper detailing the protective effects of the synthetic progestin ‘Norgestrel’. A common component of the female oral contraceptive pill, Norgestrel was shown to protect against retinal cell death in two distinct mouse models of retinal degeneration: in the Balb/c light damage model and the Pde6brd10 (rd10) model. Little was known of the molecular workings of this compound however and thus this study aimed to elucidate the protective manner in which Norgestrel worked. To this aim, the 661W cone photoreceptor-like cell line and ex vivo retinal explanting was utilised. We found that Norgestrel induces a increase in neuroprotective basic fibroblast growth factor (bFGF) with subsequent downstream actions on the inhibition of glycogen synthase kinase 3β. Progesterone receptor expression was subsequently characterised in the C57 and rd10 retinas and in the 661W cell line. Norgestrel caused nuclear trafficking of progesterone receptor membrane complex one (PGRMC1) in 661W cells and thus Norgestrel was hypothesised to work primarily through the actions of PGRMC1. This trafficking was shown to be responsible for the critical upregulation of bFGF and PGRMC1- Norgestrel binding was proven to cause a neuroprotective bFGF-mediated increase in intracellular calcium. The protective properties of Norgestrel were further studied in the rd10 mouse model of retinitis pigmentosa. Using non-invasive diet supplementation (80mg/kg), we showed that Norgestrel gave significant retinal protection out to postnatal day 40 (P40). Overactive microglia have previously been shown to potentiate photoreceptor cell loss in the degenerating rd10 retina and thus we focussed on Norgestrel-mediated changes in photoreceptor-microglial crosstalk. Norgestrel acted to dampen pro-inflammatory microglial cell reactivity, decreasing chemokine (MCP1, MCP3, MIP-1α, MIP-1β) and subsequent damaging cytokine (TNFα, Il-1β) production. Critically, Norgestrel up-regulated photoreceptor-microglial, fractalkine-CX3CR1 signalling 1000-fold in the P20 rd10 mouse. Known to prevent microglial activation, we hypothesise that Norgestrel acts as a vital anti-inflammatory in the diseased retina, driving fractalkine-CX3CR1 signalling to delay retinal degeneration. This study stands to highlight some of the neuroprotective mechanisms utilised by Norgestrel in the prevention of photoreceptor cell death. We identify for the first time, not only a pro-survival pathway activated directly in photoreceptor cells, but also a Norgestreldriven mediation of an otherwise damaging microglial cell response. All taken, these results form the beginning of a case to bring Norgestrel to clinical trials, as a potential therapeutic for the treatment of RP.
Resumo:
In vascular plants, mutations leading to a defect in debranching enzyme lead to the simultaneous synthesis of glycogen-like material and normal starch. In Chlamydomonas reinhardtii comparable defects lead to the replacement of starch by phytoglycogen. Therefore, debranching was proposed to define a mandatory step for starch biosynthesis. We now report the characterization of small amounts of an insoluble, amylose-like material found in the mutant algae. This novel, starch-like material was shown to be entirely dependent on the presence of granule-bound starch synthase (GBSSI), the enzyme responsible for amylose synthesis in plants. However, enzyme activity assays, solubilization of proteins from the granule, and western blots all failed to detect GBSSI within the insoluble polysaccharide matrix. The glycogen-like polysaccharides produced in the absence of GBSSI were proved to be qualitatively and quantitatively identical to those produced in its presence. Therefore, we propose that GBSSI requires the presence of crystalline amylopectin for granule binding and that the synthesis of amylose-like material can proceed at low levels without the binding of GBSSI to the polysaccharide matrix. Our results confirm that amylopectin synthesis is completely blocked in debranching-enzyme-defective mutants of C. reinhardtii.
Resumo:
Fetal growth restriction (FGR) is characterized by the birth weight and body mass below the tenth percentile for gestational age. FGR is a major cause of perinatal morbidity and mortality and babies born with FGR are prone to develop cardiovascular diseases later in life. The underlying pathology of FGR is inadequate placental transfer of nutrients from mother to fetus, which can be caused by placental insufficiency. Hydrogen sulfide (H2S), a gaseous messenger is produced endogenously by cystathionine-lyase (Cth), cystathionine-β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST), which are present in human placenta. Recently, we demonstrated that the dysregulation of H2S/Cth pathway is associated with preeclampsia and blockade of CSE activity induces preeclampsia-like condition in pregnant mice. We hypothesized that defect in H2S pathways promote FGR and H2S donor restores fetal growth in mice where CBS or CSE activity has been compromised. Western blotting and qPCR revealed that placental CBS expressions were significantly reduced in women with FGR. ELISA analysis showed reduced placental growth factor production (PlGF) from first trimester (8–12 weeks gestation) human placental explants following inhibition of CBS activity by aminooxyacetic acid (AOA). Administration of AOA to pregnant mice had no effects on blood pressure, but caused fetal growth restriction. This was associated with reduced PlGF production. Histological analysis revealed a reduction in the placental junction zone, within which trophoblast giant cells and glycogen cells were less prominent in CBS inhibitor treated mice. These results imply that placental CBS is required for placental development and that dysregulation of CBS activity may contribute to the pathogenesis of FGR but not preeclampsia.