981 resultados para global change


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes a process-based metapopulation dynamics and phenology model of prickly acacia, Acacia nilotica, an invasive alien species in Australia. The model, SPAnDX, describes the interactions between riparian and upland sub-populations of A. nilotica within livestock paddocks, including the effects of extrinsic factors such as temperature, soil moisture availability and atmospheric concentrations of carbon dioxide. The model includes the effects of management events such as changing the livestock species or stocking rate, applying fire, and herbicide application. The predicted population behaviour of A. nilotica was sensitive to climate. Using 35 years daily weather datasets for five representative sites spanning the range of conditions that A. nilotica is found in Australia, the model predicted biomass levels that closely accord with expected values at each site. SPAnDX can be used as a decision-support tool in integrated weed management, and to explore the sensitivity of cultural management practices to climate change throughout the range of A. nilotica. The cohort-based DYMEX modelling package used to build and run SPAnDX provided several advantages over more traditional population modelling approaches (e.g. an appropriate specific formalism (discrete time, cohort-based, process-oriented), user-friendly graphical environment, extensible library of reusable components, and useful and flexible input/output support framework). (C) 2003 Published by Elsevier Science B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Much attention has been paid to the effects of climate change on species' range reductions and extinctions. There is however surprisingly little information on how climate change driven threat may impact the tree of life and result in loss of phylogenetic diversity (PD). Some plant families and mammalian orders reveal nonrandom extinction patterns, but many other plant families do not. Do these discrepancies reflect different speciation histories and does climate induced extinction result in the same discrepancies among different groups? Answers to these questions require representative taxon sampling. Here, we combine phylogenetic analyses, species distribution modeling, and climate change projections on two of the largest plant families in the Cape Floristic Region (Proteaceae and Restionaceae), as well as the second most diverse mammalian order in Southern Africa (Chiroptera), and an herbivorous insect genus (Platypleura) in the family Cicadidae to answer this question. We model current and future species distributions to assess species threat levels over the next 70years, and then compare projected with random PD survival. Results for these animal and plant clades reveal congruence. PD losses are not significantly higher under predicted extinction than under random extinction simulations. So far the evidence suggests that focusing resources on climate threatened species alone may not result in disproportionate benefits for the preservation of evolutionary history.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Continental-scale assessments of 21st century global impacts of climate change on biodiversity have forecasted range contractions for many species. These coarse resolution studies are, however, of limited relevance for projecting risks to biodiversity in mountain systems, where pronounced microclimatic variation could allow species to persist locally, and are ill-suited for assessment of species-specific threat in particular regions. Here, we assess the impacts of climate change on 2632 plant species across all major European mountain ranges, using high-resolution (ca. 100 m) species samples and data expressing four future climate scenarios. Projected habitat loss is greater for species distributed at higher elevations; depending on the climate scenario, we find 36-55% of alpine species, 31-51% of subalpine species and 19-46% of montane species lose more than 80% of their suitable habitat by 2070-2100. While our high-resolution analyses consistently indicate marked levels of threat to cold-adapted mountain florae across Europe, they also reveal unequal distribution of this threat across the various mountain ranges. Impacts on florae from regions projected to undergo increased warming accompanied by decreased precipitation, such as the Pyrenees and the Eastern Austrian Alps, will likely be greater than on florae in regions where the increase in temperature is less pronounced and rainfall increases concomitantly, such as in the Norwegian Scandes and the Scottish Highlands. This suggests that change in precipitation, not only warming, plays an important role in determining the potential impacts of climate change on vegetation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Biological invasions and land-use changes are two major causes of the global modifications of biodiversity. Habitat suitability models are the tools of choice to predict potential distributions of invasive species. Although land-use is a key driver of alien species invasions, it is often assumed that land-use is constant in time. Here we combine historical and present day information, to evaluate whether land-use changes could explain the dynamic of invasion of the American bullfrog Rana catesbeiana (=Lithobathes catesbeianus) in Northern Italy, from the 1950s to present-day. We used maxent to build habitat suitability models, on the basis of past (1960s, 1980s) and present-day data on land-uses and species distribution. For example, we used models built using the 1960s data to predict distribution in the 1980s, and so on. Furthermore, we used land-use scenarios to project suitability in the future. Habitat suitability models predicted well the spread of bullfrogs in the subsequent temporal step. Models considering land-use changes predicted invasion dynamics better than models assuming constant land-use over the last 50 years. Scenarios of future land-use suggest that suitability will remain similar in the next years. Habitat suitability models can help to understand and predict the dynamics of invasions; however, land-use is not constant in time: land-use modifications can strongly affect invasions; furthermore, both land management and the suitability of a given land-use class may vary in time. An integration of land-use changes in studies of biological invasions can help to improve management strategies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Regions under tropical rainforest cover, such as central Africa and Brazil are characterised by degradation and dismantling of old ferricrete structures. In southern Cameroon, these processes are relayed by present-day ferruginous accumulation soil facies, situated on the middle and the lower part of hill slopes. These facies become progressively harder towards the surface, containing from bottom to top, mainly kaolinite, kaolinite-goethite and Al-rich goethite-hematite, and are discontinuous to the relictic hematite-dominated ferricrete that exist in the upper part of the hill slope. These features were investigated in terms of geochemical differentiation of trace elements. It appears that, in contrast to the old ferricrete facies, the current ferruginous accumulations are enriched in transitional trace elements (V, Cr, Co, Y, Sc) and Ph, while alkali-earth elements are less differentiated. This recent chemical accumulation is controlled both by intense weathering of the granodiorite bedrock and by mobilisation of elements previously accumulated in the old ferricrete. The observed processes are clearly linked to the present-day humid climate with rising groundwater tables. They slowly replace the old ferricretes formed during Cretaceous time under more seasonal climatic conditions, representing an instructive case of continuos global change. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Climate warming leads to a decrease in biodiversity. Organisms can deal with the new prevailing environmental conditions by one of two main routes, namely evolving new genetic adaptations or through phenotypic plasticity to modify behaviour and physiology. Melanin-based colouration has important functions in animals including a role in camouflage and thermoregulation, protection against UV-radiation and pathogens and, furthermore, genes involved in melanogenesis can pleiotropically regulate behaviour and physiology. In this article, I review the current evidence that differently coloured individuals are differentially sensitive to climate change. Predicting which of dark or pale colour variants (or morphs) will be more penalized by climate change will depend on the adaptive function of melanism in each species as well as how the degree of colouration covaries with behaviour and physiology. For instance, because climate change leads to a rise in temperature and UV-radiation and dark colouration plays a role in UV-protection, dark individuals may be less affected from global warming, if this phenomenon implies more solar radiation particularly in habitats of pale individuals. In contrast, as desertification increases, pale colouration may expand in those regions, whereas dark colourations may expand in regions where humidity is predicted to increase. Dark colouration may be also indirectly selected by climate warming because genes involved in the production of melanin pigments confer resistance to a number of stressful factors including those associated with climate warming. Furthermore, darker melanic individuals are commonly more aggressive than paler conspecifics, and hence they may better cope with competitive interactions due to invading species that expand their range in northern latitudes and at higher altitudes. To conclude, melanin may be a major component involved in adaptation to climate warming, and hence in animal populations melanin-based colouration is likely to change as an evolutionary or plastic response to climate warming.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The distribution range of Lactuca serriola, a species native to the summer-dry mediterranean climate, has expanded northwards during the last 250 years. This paper assesses the influence of climate on the range expansion of this species and highlights the importance of anthropogenic disturbance to its spread. Location Central and Northern Europe. Methods Data on the geographic distribution of L. serriola were assembled through a literature search as well as through floristic and herbarium surveys. Maps of the spread of L. serriola in Central and Northern Europe were prepared based on herbarium data. The spread was assessed more precisely in Germany, Austria and Great Britain by pooling herbarium and literature data. We modelled the bioclimatic niche of the species using occurrence and climatic data covering the last century to generate projections of suitable habitats under the climatic conditions of five time periods. We tested whether the observed distribution of L. serriola could be explained for each time period, assuming that the climatic niche of the species was conserved across time. Results The species has spread northwards since the beginning of the 19th century. We show that climate warming in Europe increased the number of sites suitable for the species at northern latitudes. Until the late 1970s, the distribution of the species corresponded to the climatically suitable sites available. For the last two decades, however, we could not show any significant relationship between the increase in suitable sites and the distributional range change of L. serriola. However, we highlight potential areas the species could spread to in the future (Great Britain, southern Scandinavia and the Swedish coast). It is predominantly non-climatic influences of global change that have contributed to its rapid spread. Main conclusions The observation that colonizing species are not filling their climatically suitable range might imply that, potentially, other ruderal species could expand far beyond their current range. Our work highlights the importance of historical floristic and herbarium data for understanding the expansion of a species. Such historical distributional data can provide valuable information for those planning the management of contemporary environmental problems, such as species responses to environmental change.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Based on conclusions drawn from general climatic impact assessment in mountain regions, the review synthesizes results relevant to the European Alps published mainly from 1994 onward in the fields of population genetics, ecophysiology, phenology, phytogeography, modeling, paleoecology and vegetation dynamics. Other important factors of global change interacting synergistically with climatic factors are also mentioned, such as atmospheric CO2 concentration, eutrophication, ozone or changes in land-use. Topics addressed are general species distribution and populations (persistence, acclimation, genetic variability, dispersal, fragmentation, plant/animal interaction, species richness, conservation), potential response of vegetation (ecotonal shift - area, physiography - changes in the composition, structural changes), phenology, growth and productivity, and landscape. In conclusion, the European Alps appear to have a natural inertia and thus to tolerate an increase of 1-2 K of mean air temperature as far as plant species and ecosystems are concerned in general. However, the impact of land-use is very likely to negate this buffer in many areas. For a change of the order of 3 K or more, profound changes may be expected.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Different components of global change can have interacting effects on biodiversity and this may influence our ability to detect the specific consequences of climate change through biodiversity indicators. Here, we analyze whether climate change indicators can be affected by land use dynamics that are not directly determined by climate change. To this aim, we analyzed three community-level indicators of climate change impacts that are based on the optimal thermal environment and averagelatitude of the distribution of bird species present at local communities. We used multiple regression models to relate the variation in climate change indicators to: i) environmental temperature; and ii) three landscape gradients reflecting important current land use change processes (land abandonment, fire impacts and urbanization), all of them having forest areas at their positive extremes. We found that, with few exceptions, landscape gradients determined the figures of climate change indicators as strongly as temperature. Bird communities in forest habitats had colder-dwelling bird species with more northerndistributions than farmland, burnt or urban areas. Our results show that land use changes can reverse, hide or exacerbate our perception of climate change impacts when measured through community-level climate change indicators. We stress the need of an explicit incorporation of the interactions between climate change and land use dynamics to understand what are current climate change indicators indicating and be able to isolate real climate change impacts

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mountain ecosystems will likely be affected by global warming during the 21st century, with substantial biodiversity loss predicted by species distribution models (SDMs). Depending on the geographic extent, elevation range and spatial resolution of data used in making these models, different rates of habitat loss have been predicted, with associated risk of species extinction. Few coordinated across-scale comparisons have been made using data of different resolution and geographic extent. Here, we assess whether climate-change induced habitat losses predicted at the European scale (10x10' grid cells) are also predicted from local scale data and modeling (25x25m grid cells) in two regions of the Swiss Alps. We show that local-scale models predict persistence of suitable habitats in up to 100% of species that were predicted by a European-scale model to lose all their suitable habitats in the area. Proportion of habitat loss depends on climate change scenario and study area. We find good agreement between the mismatch in predictions between scales and the fine-grain elevation range within 10x10' cells. The greatest prediction discrepancy for alpine species occurs in the area with the largest nival zone. Our results suggest elevation range as the main driver for the observed prediction discrepancies. Local scale projections may better reflect the possibility for species to track their climatic requirement toward higher elevations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The current challenge in a context of major environmental changes is to anticipate the responses of species to future landscape and climate scenarios. In the Mediterranean basin, climate change is one the most powerful driving forces of fire dynamics, with fire frequency and impact having markedly increased in recent years. Species distribution modelling plays a fundamental role in this challenge, but better integration of available ecological knowledge is needed to adequately guide conservation efforts. Here, we quantified changes in habitat suitability of an early-succession bird in Catalonia, the Dartford Warbler (Sylvia undata) ― globally evaluated as Near Threatened in the IUCN Red List. We assessed potential changes in species distributions between 2000 and 2050 under different fire management and climate change scenarios and described landscape dynamics using a spatially-explicit fire-succession model that simulates fire impacts in the landscape and post-fire regeneration (MEDFIRE model). Dartford Warbler occurrence data were acquired at two different spatial scales from: 1) the Atlas of European Breeding Birds (EBCC) and 2) Catalan Breeding Bird Atlas (CBBA). Habitat suitability was modelled using five widely-used modelling techniques in an ensemble forecasting framework. Our results indicated considerable habitat suitability losses (ranging between 47% and 57% in baseline scenarios), which were modulated to a large extent by fire regime changes derived from fire management policies and climate changes. Such result highlighted the need for taking the spatial interaction between climate changes, fire-mediated landscape dynamics and fire management policies into account for coherently anticipating habitat suitability changes of early succession bird species. We conclude that fire management programs need to be integrated into conservation plans to effectively preserve sparsely forested and early succession habitats and their associated species in the face of global environmental change.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

While ecological effects on short-term population dynamics are well understood, their effects over millennia are difficult to demonstrate and convincing evidence is scant. Using coalescent methods, we analysed past population dynamics of three lizard species (Psammodromus hispanicus, P. edwardsianus, P. occidentalis) and linked the results with climate change data covering the same temporal horizon (120 000 years). An increase in population size over time was observed in two species, and in P. occidentalis, no change was observed. Temporal changes in temperature seasonality and the maximum temperature of the warmest month were congruent with changes in population dynamics observed for the three species and both variables affected population density, either directly or indirectly (via a life-history trait). These results constitute the first solid link between ecological change and long-term population dynamics. The results moreover suggest that ecological change leaves genetic signatures that can be retrospectively traced, providing evidence that ecological change is a crucial driver of genetic diversity and speciation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A distinctive period of global change occurred during the PUocene between the warm Miocene and subsequent Quaternary cooling. Samples from Ocean Drilling Project Site 11 79 (-5586 mbsl, 41°4'N, 159°57'E), Site 881 (-5765 mbsl, 47°6.133'N, 161°29.490'E) and Site 882 (-3255 mbsl, 50°22'N, 167°36'E) were studied to determine the magnitude and composition ofterrigenous flux to the western mid-latitude North Pacific and its relation to climate change in East Asia since the mid-Pliocene. Dust-sized particles (including pollen), sourced from the arid regions and loess plateaus in East Asia are entrained by prevailing westerly winds and transported to the midlatitude northwest North Pacific Ocean. This is recorded by peaks in the total concentration of pollen and spores, as well as the mean grain size of allochthonous and autochthonous silicate material in abyssal marine sediments. Aridification of the Asian interior due to the phased uplift of the Himalayan-Tibetan Plateau created the modem East Asian Monsoon system dominated by a strengthening of the winter monsoon. The winter monsoon is further enhanced during glacials due to the expansion of desert and steppe environments at the expense ofwoodlands and forests recorded by the composition of palynological assemblages. The late Pliocene-Pleistocene glacials at ODP Sites 1 179, 881, and 882 are characterized by increases in grain size, magnetic susceptibility, pollen and spore concentrations around 3.5-3.3, 2.6-2.4, 1.7-1.6, and 0.9-0.7 Ma (ages based on magnetostratigraphic and biostratigraphic datums). The peaks during these times are relatively rich in pollen taxa derived primarily from steppe and boreal vegetation zones, recording cool, dry climates. The overall size increase of sediment and abundance of terrestrial palynomorphs record enhanced wind strength. The increase in magnitude of pollen and spore concentrations as well as grain size record global cooling and Northern Hemisphere glaciation. The peaks in grain size as well as pollen and spore abundance in marine sediments correlate with the mean grain size of loess in East Asia, consistent with the deflation of unarmoured surfaces during glacials. The transport of limiting nutrients to marine environments enhanced sea surface productivity and increased the rate of sediment accumulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The cumulative effects of global change, including climate change, increased population density and domestic waste disposal, effluent discharges from industrial processes, agriculture and aquaculture will likely continue and increases the process of eutrophication in estuarine environments. Eutrophication is one of the leading causes of degraded water quality, water column hypoxia/anoxia, harmful algal bloom (HAB) and loss of habitat and species diversity in the estuarine environment. The present study attempts to characterize the trophic condition of coastal estuary using a simple tool; trophic index (TRIX) based on a linear combination of the log of four state variables with supplementary index Efficiency Coefficient (Eff. Coeff.) as a discriminating tool. Numerically, the index TRIX is scaled from 0 to10, covering a wide range of trophic conditions from oligotrophic to eutrophic. Study area Kodungallur-Azhikode Estuary (KAE) was comparatively shallow in nature with average depth of 3.6±0.2 m. Dissolve oxygen regime in the water column was ranged from 4.7±1.3 mgL−1 in Station I to 5.9±1.4 mgL−1 in Station IV. The average nitrate-nitrogen (NO3-N) of KAE water was 470 mg m−3; values ranged from Av. 364.4 mg m−3 at Station II to Av. 626.6 mg m−3at Station VII. The mean ammonium-nitrogen (NH4 +-N) varied from 54.1 mg m−3 at Station VII to 101 mg m−3 at Station III. The average Chl-a for the seven stations of KAE was 6.42±3.91 mg m−3. Comparisons over different spatial and temporal scales in the KAE and study observed that, estuary experiencing high productivity by the influence of high degree of eutrophication; an annual average of 6.91 TRIX was noticed in the KAE and seasonal highest was observed during pre monsoon period (7.15) and lowest during post monsoon period (6.51). In the spatial scale station V showed high value 7.37 and comparatively low values in the station VI (6.93) and station VII (6.96) and which indicates eutrophication was predominant in land cover area with comparatively high water residence time. Eff. Coeff. values in the KAE ranges from −2.74 during monsoon period to the lowest of −1.98 in pre monsoon period. Present study revealed that trophic state of the estuary under severe stress and the restriction of autochthonous and allochthonous nutrient loading should be keystone in mitigate from eutrophication process