183 resultados para giardia
Resumo:
Giardia lamblia es un protozoario parásito que habita el intestino delgado de humanos y otros vertebrados además de ser el agente responsable de la giardiasis. El fármaco de primera línea para tratar esta parasitosis es el metronidazol, el cual posee efectos adversos considerables, presenta potencial teratogénico y embriotóxico y está considerado como posible carcinógeno en humanos. Los productos naturales son una alternativa eficaz y con menos efectos secundarios para el tratamiento de la giardiasis. En el presente trabajo se determinó la Concentración Inhibitoria media (CI50) de los extractos hexánicos de Foeniculum vulgare y Citrus aurantifolia y algunos de sus constituyentes principales en contra de los trofozoítos de G. lamblia utilizando la técnica del microensayo. También se evaluó la citotoxicidad de los compuestos más activos sobre células Vero empleando el método de exclusión con azul de tripano. Contribuciones y Conclusiones: Los extractos hexánicos de F. vulgare (CI50 89.33 μg/ml) y C. aurantifolia (CI50 185.78 μg/ml) presentaron actividad anti-Giardia in vitro. Los compuestos puros más activos presentes en el extracto hexánico de F. vulgare son Trans,trans-2,4- undecadienal (CI50 72.11 μg/ml) , (+)-Canfeno (CI50 181.13 μg/ml), p-Anisaldehído (CI50 196.78 μg/ml) y (-)-Carvona (CI50 207.01 μg/ml). Mientras que los compuestos puros más activos presentes en el extracto hexánico de C. aurantifolia son Citral (CI50 58.44 μg/ml), Geraniol (CI50 229.01 μg/ml), 3-Metil-1,2-ciclopentanediona (CI50 207.01 μg/ml), 4-Hexen-3-ona (CI50 34.35 μg/ml) y (-)-Carvona (CI50 207.01 μg/ml). De todos ellos el 4-hexen-3ona es el compuesto puro más activo y con el mejor índice de selectividad (IS 19.6820). Ninguno de los compuestos fue tan activo como el metronidazol, sin embargo, ninguno fue tan citotóxico como este.
Resumo:
Giardiasis, currently considered a neglected disease, is caused by the intestinal protozoan parasite Giardia duodenalis and is widely spread in human as well as domestic and wild animals. The lack of appropriate medications and the spread of resistant parasite strains urgently call for the development of novel therapeutic strategies. Host microbiota or certain probiotic strains have the capacity to provide some protection against giardiasis. By combining biological and biochemical approaches, we have been able to decipher a molecular mechanism used by the probiotic strain Lactobacillus johnsonii La1 to prevent Giardia growth in vitro. We provide evidence that the supernatant of this strain contains active principle(s) not directly toxic to Giardia but able to convert non-toxic components of bile into components highly toxic to Giardia. By using bile acid profiling, these components were identified as deconjugated bile-salts. A bacterial bile-salt-hydrolase of commercial origin was able to mimic the properties of the supernatant. Mass spectrometric analysis of the bacterial supernatant identified two of the three bile-salt-hydrolases encoded in the genome of this probiotic strain. These observations document a possible mechanism by which L. johnsonii La1, by secreting, or releasing BSH-like activity(ies) in the vicinity of replicating Giardia in an environment where bile is present and abundant, can fight this parasite. This discovery has both fundamental and applied outcomes to fight giardiasis, based on local delivery of deconjugated bile salts, enzyme deconjugation of bile components, or natural or recombinant probiotic strains that secrete or release such deconjugating activities in a compartment where both bile salts and Giardia are present.
Resumo:
Dissertação de Mestrado Integrado em Medicina Veterinária
Resumo:
High quality, pure DNA is required for ensuring reliable and reproducible results in molecular diagnosis applications. A number of in-house and commercial methods are available for the extraction and purification of genomic DNA from faecal material, each one offering a specific combination of performance, cost-effectiveness, and easiness of use that should be conveniently evaluated in function of the pathogen of interest. In this comparative study the marketed kits QIAamp DNA stool mini (Qiagen), SpeedTools DNA extraction (Biotools), DNAExtract-VK (Vacunek), PowerFecal DNA isolation (MoBio), and Wizard magnetic DNA purification system (Promega Corporation) were assessed for their efficacy in obtaining DNA of the most relevant enteric protozoan parasites associated to gastrointestinal disease globally. A panel of 113 stool specimens of clinically confirmed patients with cryptosporidiosis (n = 29), giardiasis (n = 47) and amoebiasis by Entamoeba histolytica (n = 3) or E. dispar (n = 10) and apparently healthy subjects (n = 24) were used for this purpose. Stool samples were aliquoted in five sub-samples and individually processed by each extraction method evaluated. Purified DNA samples were subsequently tested in PCR-based assays routinely used in our laboratory. The five compared methods yielded amplifiable amounts of DNA of the pathogens tested, although performance differences were observed among them depending on the parasite and the infection burden. Methods combining chemical, enzymatic and/or mechanical lysis procedures at temperatures of at least 56 °C were proven more efficient for the release of DNA from Cryptosporidium oocysts.
Resumo:
Quantitative Microbial Risk Assessment (QMRA) analysis was used to quantify the risk of infection associated with the exposure to pathogens from potable and non-potable uses of roof-harvested rainwater in South East Queensland (SEQ). A total of 84 rainwater samples were analysed for the presence of faecal indicators (using culture based methods) and zoonotic bacterial and protozoan pathogens using binary and quantitative PCR (qPCR). The concentrations of Salmonella invA, and Giardia lamblia β-giradin genes ranged from 65-380 genomic units/1000 mL and 9-57 genomic units/1000 mL of water, respectively. After converting gene copies to cell/cyst number, the risk of infection from G. lamblia and Salmonella spp. associated with the use of rainwater for bi-weekly garden hosing was calculated to be below the threshold value of 1 extra infection per 10,000 persons per year. However, the estimated risk of infection from drinking the rainwater daily was 44-250 (for G. lamblia) and 85-520 (for Salmonella spp.) infections per 10,000 persons per year. Since this health risk seems higher than that expected from the reported incidences of gastroenteritis, the assumptions used to estimate these infection risks are critically discussed. Nevertheless, it would seem prudent to disinfect rainwater for potable use.
Resumo:
A total of 214 rainwater samples from 82 tanks were collected in urban Southeast Queensland (SEQ) in Australia and analysed for the zoonotic bacterial and protozoan pathogen using real-time binary PCR and quantitative PCR (qPCR). Quantitative Microbial Risk Assessment (QMRA) analysis was used to quantify the risk of infection associated with the exposure to potential pathogens from potable and non-potable uses of roof-harvested rainwater. Of the 214 samples tested, 10.7%, 9.8%, and 5.6%, and 0.4% samples were positive for Salmonella invA, Giardia lamblia β-giardin , Legionella pneumophila mip, and Campylobacter jejuni mapA genes. Cryptosporidium parvum could not be detected. The estimated numbers of viable Salmonella spp., G. lamblia β-giradin, and L. pneumophila genes ranged from 1.6 × 101 to 9.5 × 101 cells, 1.4 × 10-1 to 9.0 × 10-1 cysts, and 1.5 × 101 to 4.3 × 101 per 1000 ml of water, respectively. Six risk scenarios were considered from exposure to Salmonella spp., G. lamblia and L. pneumophila. For Salmonella spp., and G. lamblia, these scenarios were: (1) liquid ingestion due to drinking of rainwater on a daily basis (2) accidental liquid ingestion due to garden hosing twice a week (3) aerosol ingestion due to showering on a daily basis, and (4) aerosol ingestion due to hosing twice a week. For L. pneumophila, these scenarios were: (5) aerosol inhalation due to showering on a daily basis, and (6) aerosol inhalation due to hosing twice a week. The risk of infection from Salmonella spp., G. lamblia, and L. pneumophila associated with the use of rainwater for showering and garden hosing was calculated to be well below the threshold value of one extra infection per 10,000 persons per year in urban SEQ. However, the risk of infection from ingesting Salmonella spp. and G. lamblia via drinking exceeds this threshold value, and indicates that if undisinfected rainwater were ingested by drinking, then the gastrointestinal diseases of Salmonellosis and Giardiasis is expected to range from 5.0 × 100 to 2.8 × 101 (Salmonellosis) and 1.0 × 101 to 6.4 × 101 (Giardiasis) cases per 10,000 persons per year, respectively. Since this health risk seems higher than that expected from the reported incidences of gastroenteritis, the assumptions used to estimate these infection risks are critically examined. Nonetheless, it would seem prudent to disinfect rainwater for potable use.
Resumo:
The active site of triosephosphate isomerase (TIM, EC: 5.3.1.1), a dimeric enzyme, lies very close to the subunit interface. Attempts to engineer monomeric enzymes have yielded well-folded proteins with dramatically reduced activity. The role of dimer interface residues in the stability and activity of the Plasmodium falciparum enzyme, PfTIM, has been probed by analysis of mutational effects at residue 74. The PfTIM triple mutant W11F/W168F/Y74W (Y74W*) has been shown to dissociate at low protein concentrations, and exhibits considerably reduced stability in the presence of denaturants, urea and guanidinium chloride. The Y74W* mutant exhibits concentration-dependent activity, with an approximately 22-fold enhancement of kcat over a concentration range of 2.5–40 μm, suggesting that dimerization is obligatory for enzyme activity. The Y74W* mutant shows an approximately 20-fold reduction in activity compared to the control enzyme (PfTIM WT*, W11F/W168F). Careful inspection of the available crystal structures of the enzyme, together with 412 unique protein sequences, revealed the importance of conserved residues in the vicinity of the active site that serve to position the functional K12 residue. The network of key interactions spans the interacting subunits. The Y74W* mutation can perturb orientations of the active site residues, due to steric clashes with proximal aromatic residues in PfTIM. The available crystal structures of the enzyme from Giardia lamblia, which contains a Trp residue at the structurally equivalent position, establishes the need for complementary mutations and maintenance of weak interactions in order to accommodate the bulky side chain and preserve active site integrity.
Resumo:
Heat shock protein 90 participates in diverse biological processes ranging from protein folding, cell cycle, signal transduction and development to evolution in all eukaryotes. It is also critically involved in regulating growth of protozoa such as Dictyostelium discoideum, Leishmania donovani, Plasmodium falciparum, Trypanosoma cruzi, and Trypanosoma evansi. Selective inhibition of Hsp90 has also been explored as an intervention strategy against important human diseases such as cancer, malaria, or trypanosomiasis. Giardia lamblia, a simple protozoan parasite of humans and animals, is an important cause of diarrheal disease with significant morbidity and some mortality in tropical countries. Here we show that the G. lamblia cytosolic hsp90 ( glhsp90) is split in two similar sized fragments located 777 kb apart on the same scaffold. Intrigued by this unique arrangement, which appears to be specific for the Giardiinae, we have investigated the biosynthesis of GlHsp90. We used genome sequencing to confirm the split nature of the giardial hsp90. However, a specific antibody raised against the peptide detected a product with a mass of about 80 kDa, suggesting a post-transcriptional rescue of the genomic defect. We show evidence for the joining of the two independent Hsp90 transcripts in-trans to one long mature mRNA presumably by RNA splicing. The splicing junction carries hallmarks of classical cis-spliced introns, suggesting that the regular cis-splicing machinery may be sufficient for repair of the open reading frame. A complementary 26-nt sequence in the ``intron'' regions adjacent to the splice sites may assist in positioning the two pre-mRNAs for processing. This is the first example of post-transcriptional rescue of a split gene by trans-splicing.
Resumo:
Significant advances have been made in our understanding of heat shock protein 90 (Hsp90) in terms of its structure, biochemical characteristics, post-translational modifications, interactomes, regulation and functions. In addition to yeast as a model several new systems have now been examined including flies, worms, plants as well as mammalian cells. This review discusses themes emerging out of studies reported on Hsp90 from infectious disease causing protozoa. A common theme of sensing and responding to host cell microenvironment emerges out of analysis of Hsp90 in Malaria, Trypanosmiasis as well as Leishmaniasis. In addition to their functional roles, the potential of Hsp90 from these infectious disease causing organisms to serve as drug targets and the current status of this drug development endeavor are discussed. Finally, a unique and the only known example of a split Hsp90 gene from another disease causing protozoan Giardia lamblia and its evolutionary significance are discussed. Clearly studies on Hsp90 from protozoan parasites promise to reveal important new paradigms in Hsp90 biology while exploring its potential as an anti-infective drug target. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Combating stress is one of the prime requirements for any organism. For parasitic microbes, stress levels are highest during the growth inside the host. Their survival depends on their ability to acclimatize and adapt to new environmental conditions. Robust cellular machinery for stress response is, therefore, both critical and essential especially for pathogenic microorganisms. Microbes have cleverly exploited stress proteins as virulence factors for pathogenesis in their hosts. Owing to its ability to sense and respond to the stress conditions, Heat shock protein 90 (Hsp90) is one of the key stress proteins utilized by parasitic microbes. There are growing evidences for the critical role played by Hsp90 in the growth of pathogenic organisms like Candida, Giardia, Plasmodium, Trypanosoma, and others. This review, therefore, explores potential of exploiting Hsp90 as a target for the treatment of infectious diseases. This molecular chaperone has already gained attention as an effective anti-cancer drug target. As a result, a lot of research has been done at laboratory, preclinical and clinical levels for several Hsp90 inhibitors as potential anti-cancer drugs. In addition, lot of data pertaining to toxicity studies, pharmacokinetics and pharmacodynamics studies, dosage regime, drug related toxicities, dose limiting toxicities as well as adverse drug reactions are available for Hsp90 inhibitors. Therefore, repurposing/repositioning strategies are also being explored for these compounds which have gone through advanced stage clinical trials. This review presents a comprehensive summary of current status of development of Hsp90 as a drug target and its inhibitors as candidate anti-infectives. A particular emphasis is laid on the possibility of repositioning strategies coupled with pharmaceutical solutions required for fulfilling needs for ever growing pharmaceutical infectious disease market.
Resumo:
Enteric protozoan Entamoeba histolytica is a major cause of debilitating diarrheal infection worldwide with high morbidity and mortality. Even though the clinical burden of this parasite is very high, this infection is categorized as a neglected disease. Parasite is transmitted through feco-oral route and exhibit two distinct stages namely - trophozoites and cysts. Mechanism and regulation of encystation is not clearly understood. Previous studies have established the role of Heat shock protein 90 (Hsp90) in regulating stage transition in various protozoan parasites like Giardia, Plasmodium, Leishmania, and Toxoplasma. Our study for the first time reports that Hsp90 plays a crucial role in life cycle of Entamoeba as well. We identify Hsp90 to be a negative regulator of encystation in Entamoeba. We also show that Hsp90 inhibition interferes with the process of phagocytosis in Entamoeba. Overall, we show that Hsp90 plays an important role in virulence and transmission of Entamoeba.
Resumo:
[目的 ]探讨蓝氏贾第鞭毛虫种内系统发育及遗传多样性。 [方法 ]对不同来源虫株的磷酸丙糖异构酶(tim)基因进行 PCR扩增、序列测定后 ,用简约法和 NJ法构建分子系统树进行系统学分析。 [结果 ]在所测序列中共有 12 4个位点存在变异 (2 3% ) ,且大多数为发生在第三密码子的同义突变 ,两种构树方法所得两树的分枝结构相似 ,均将受试的 16株蓝氏贾第鞭毛虫分为明显的两组。 [结论 ]tim基因可作为研究蓝氏贾第鞭毛虫群体遗传结构一个有效的遗传标记
Resumo:
为探讨贾第虫细胞核内核糖体合成系统, 及与典型的真核生物有何差异, 首先, 确定在典型真核生 物中参与核糖体合成的条共有的保守蛋白, 然后用这些蛋白搜索贾第虫基因组以调查它们在贾第虫中的直 系同源蛋白的情况, 以对贾第虫的核糖体合成系统作一了解。结果表明贾第虫具有条这些蛋白的直系同 源蛋白, 包括参与甲基化和假尿嚓咙化的蛋白复合体成员, 以及存在于、和复合体中的蛋 白。贾第虫的核糖体合成系统与典型的真核生物相似, 但还有条蛋白在贾第虫基因组中找不到同源蛋白。 这意味着贾第虫的核糖体合成系统较典型的真核生物简单。贾第虫虽然没有核仁结构, 但其核糖体亚基合成的 途径和机制可能与真核细胞相似, 参与的成分不同于无核仁结构的原核生物, 可能相对简单。
Resumo:
贾第虫一度被认为是迄今已知的最原始的真核细胞, 但近来争议日盛。利用PCR 和测序等技术, 对 蓝氏贾第虫( Giardia lamblia) 的核纤层蛋白(lamin) 基因进行了研究。结果表明: 蓝氏贾第虫基因组中存在 一个编码具有明显lamin 特征的基因序列。如该基因序列的3′- 端具有编码与核内膜亲和的特征性模体(motif ) CaaX 的序列; 具有B 型lamin 基因所特有的高度保守的27 bp 片段, 该片段编码高度保守的位于α螺旋杆状区 的9 氨基酸片段等。同时, 这些序列特征又与多细胞的后生动物存在一定差异。这些事实说明在贾第虫中已经 进化产生了典型真核细胞的B 型lamin (基因) 或至少是类似B 型的lamin (基因) , 该生物的进化地位可能并 非过去所认为的那么原始。