985 resultados para genetic transformation
Resumo:
Heterokaryons were obtained by hyphal anastomosis in Trichoderma pseudokoningii using strains with morphologic and double auxotrophic genetic markers. Stable haploid and unstable hyperhaploid recombinants were detected in monosporic colonies derived from heterokaryons and selected in appropriate media or by an enrichment filtration technique. Diploids were not observed and the recombinant frequencies were higher than those found in fungi with a typical parasexual cycle. The mechanism of recombinant emergence may involve a transient diploid formation followed by chromosomal losses at the hyphal stages, resulting in haploid and hyperhaploid recombinants. The possibility of intrachromosomal rearrangement with the involvement of cytoplasmatic DNA as a heterokaryotic transformation system cannot be excluded.
Resumo:
Cattle resistance to ticks is measured by the number of ticks infesting the animal. The model used for the genetic analysis of cattle resistance to ticks frequently requires logarithmic transformation of the observations. The objective of this study was to evaluate the predictive ability and goodness of fit of different models for the analysis of this trait in cross-bred Hereford x Nellore cattle. Three models were tested: a linear model using logarithmic transformation of the observations (MLOG); a linear model without transformation of the observations (MLIN); and a generalized linear Poisson model with residual term (MPOI). All models included the classificatory effects of contemporary group and genetic group and the covariates age of animal at the time of recording and individual heterozygosis, as well as additive genetic effects as random effects. Heritability estimates were 0.08 ± 0.02, 0.10 ± 0.02 and 0.14 ± 0.04 for MLIN, MLOG and MPOI models, respectively. The model fit quality, verified by deviance information criterion (DIC) and residual mean square, indicated fit superiority of MPOI model. The predictive ability of the models was compared by validation test in independent sample. The MPOI model was slightly superior in terms of goodness of fit and predictive ability, whereas the correlations between observed and predicted tick counts were practically the same for all models. A higher rank correlation between breeding values was observed between models MLOG and MPOI. Poisson model can be used for the selection of tick-resistant animals. © 2013 Blackwell Verlag GmbH.
Resumo:
The columnar growth habit of apple is interesting from an economic point of view as the pillar-like trees require little space and labor. Genetic engineering could be used to speed up breeding for columnar trees with high fruit quality and disease resistance. For this purpose, this study dealt with the molecular causes of this interesting phenotype. The original bud sport mutation that led to the columnar growth habit was found to be a novel nested insertion of a Gypsy-44 LTR retrotransposon on chromosome 10 at 18.79 Mb. This subsequently causes tissue-specific differential expression of nearby downstream genes, particularly of a gene encoding a 2OG-Fe(II) oxygenase of unknown function (dmr6-like) that is strongly upregulated in developing aerial tissues of columnar trees. The tissue-specificity of the differential expression suggests involvement of cis-regulatory regions and/or tissue-specific epigenetic markers whose influence on gene expression is altered due to the retrotransposon insertion. This eventually leads to changes in genes associated with stress and defense reactions, cell wall and cell membrane metabolism as well as phytohormone biosynthesis and signaling, which act together to cause the typical phenotype characteristics of columnar trees such as short internodes and the absence of long lateral branches. In future, transformation experiments introducing Gypsy-44 into non-columnar varieties or excising Gypsy-44 from columnar varieties would provide proof for our hypotheses. However, since site-specific transformation of a nested retrotransposon is a (too) ambitious objective, silencing of the Gypsy-44 transcripts or the nearby genes would also provide helpful clues.
Resumo:
Digital signal processing (DSP) techniques for biological sequence analysis continue to grow in popularity due to the inherent digital nature of these sequences. DSP methods have demonstrated early success for detection of coding regions in a gene. Recently, these methods are being used to establish DNA gene similarity. We present the inter-coefficient difference (ICD) transformation, a novel extension of the discrete Fourier transformation, which can be applied to any DNA sequence. The ICD method is a mathematical, alignment-free DNA comparison method that generates a genetic signature for any DNA sequence that is used to generate relative measures of similarity among DNA sequences. We demonstrate our method on a set of insulin genes obtained from an evolutionarily wide range of species, and on a set of avian influenza viral sequences, which represents a set of highly similar sequences. We compare phylogenetic trees generated using our technique against trees generated using traditional alignment techniques for similarity and demonstrate that the ICD method produces a highly accurate tree without requiring an alignment prior to establishing sequence similarity.
Resumo:
Linkage and association studies are major analytical tools to search for susceptibility genes for complex diseases. With the availability of large collection of single nucleotide polymorphisms (SNPs) and the rapid progresses for high throughput genotyping technologies, together with the ambitious goals of the International HapMap Project, genetic markers covering the whole genome will be available for genome-wide linkage and association studies. In order not to inflate the type I error rate in performing genome-wide linkage and association studies, multiple adjustment for the significant level for each independent linkage and/or association test is required, and this has led to the suggestion of genome-wide significant cut-off as low as 5 × 10 −7. Almost no linkage and/or association study can meet such a stringent threshold by the standard statistical methods. Developing new statistics with high power is urgently needed to tackle this problem. This dissertation proposes and explores a class of novel test statistics that can be used in both population-based and family-based genetic data by employing a completely new strategy, which uses nonlinear transformation of the sample means to construct test statistics for linkage and association studies. Extensive simulation studies are used to illustrate the properties of the nonlinear test statistics. Power calculations are performed using both analytical and empirical methods. Finally, real data sets are analyzed with the nonlinear test statistics. Results show that the nonlinear test statistics have correct type I error rates, and most of the studied nonlinear test statistics have higher power than the standard chi-square test. This dissertation introduces a new idea to design novel test statistics with high power and might open new ways to mapping susceptibility genes for complex diseases. ^
Resumo:
Members of the bacterial families Haemophilus and Neisseria, important human pathogens that commonly colonize the nasopharynx, are naturally competent for DNA uptake from their environment. In each genus this process is discriminant in favor of its own and against foreign DNA through sequence specificity of DNA receptors. The Haemophilus DNA uptake apparatus binds a 29-bp oligonucleotide domain containing a highly conserved 9-bp core sequence, whereas the neisserial apparatus binds a 10-bp motif. Each motif (“uptake sequence”, US) is highly over-represented in the chromosome of the corresponding genus, particularly concentrated with core sequences in inverted pairs forming gene terminators. Two Haemophilus core USs were unexpectedly found forming the terminator of sodC in Neisseria meningitidis (meningococcus), and sequence analysis strongly suggests that this virulence gene, located next to IS1106, arose through horizontal transfer from Haemophilus. By using USs as search strings in a computer-based analysis of genome sequence, it was established that while USs of the “wrong” genus do not occur commonly in Neisseria or Haemophilus, where they do they are highly likely to flag domains of chromosomal DNA that have been transferred from Haemophilus. Three independent domains of Haemophilus-like DNA were found in the meningococcal chromosome, associated respectively with the virulence gene sodC, the bio gene cluster, and an unidentified orf. This report identifies intergenerically transferred DNA and its source in bacteria, and further identifies transformation with heterologous chromosomal DNA as a way of establishing potentially important chromosomal mosaicism in these pathogenic bacteria.
Resumo:
Mutant forms of the BRCA2 gene contribute significantly to hereditary breast cancer. Isolation of the normal and mutant forms of the BRCA2 gene with its natural promoter would greatly facilitate analysis of the gene and its contribution to breast cancer. We have accomplished the direct isolation of the 90-kb gene from total human DNA by transformation-associated recombination in yeast using a small amount of 5′ and 3′ BRCA2 sequence information. Because the entire isolation procedure of a single chromosomal gene could be accomplished in approximately 2 weeks, the transformation-associated recombination cloning approach is readily applicable to studies of chromosome alterations and human genetic diseases.
Resumo:
Blastic transformation of chronic myelogenous leukemia (CML) is characterized by the presence of nonrandom, secondary genetic abnormalities in the majority of Philadelphia1 clones, and loss of p53 tumor suppressor gene function is a consistent finding in 25–30% of CML blast crisis patients. To test whether the functional loss of p53 plays a direct role in the transition of chronic phase to blast crisis, bone marrow cells from p53+/+ or p53−/− mice were infected with a retrovirus carrying either the wild-type BCR/ABL or the inactive kinase-deficient mutant, and were assessed for colony-forming ability. Infection of p53−/− marrow cells with wild-type BCR/ABL, but not with the kinase-deficient mutant, enhanced formation of hematopoietic colonies and induced growth factor independence at high frequency, as compared with p53+/+ marrow cells. These effects were suppressed when p53−/− marrow cells were coinfected with BCR/ABL and wild-type p53. p53-deficient BCR/ABL-infected marrow cells had a proliferative advantage, as reflected by an increase in the fraction of S+G2 phase cells and a decrease in the number of apoptotic cells. Immunophenotyping and morphological analysis revealed that BCR/ABL-positive p53−/− cells were much less differentiated than their BCR/ABL-positive p53+/+ counterparts. Injection of immunodeficient mice with BCR/ABL-positive p53−/− cells produced a transplantable, highly aggressive, poorly differentiated acute myelogenous leukemia. In marked contrast, the disease process in mice injected with BCR/ABL-positive p53+/+ marrow cells was characterized by cell infiltrates with a more differentiated phenotype and was significantly retarded, as indicated by a much longer survival of leukemic mice. Together, these findings directly demonstrate that loss of p53 function plays an important role in blast transformation in CML.
Resumo:
An mRNA differential display comparison of mouse JB6 promotion-sensitive (P+) and -resistant (P−) cells identified a novel gene product that inhibits neoplastic transformation. The JB6 P+ and P− cells are genetic variants that differ in their transformation response to tumor promoters; P+ cells form anchorage-independent colonies that are tumorigenic, and P− cells do not. A differentially displayed fragment, A7-1, was preferentially expressed in P− cells at levels ≥10-fold those in P+ cells, making its mRNA a candidate inhibitor of neoplastic transformation. An A7-1 cDNA was isolated that was identical to murine Pdcd4 gene cDNAs, also known as MA-3 or TIS, and analogous to human H731 and 197/15a. Until now, the function of the Pdcd4 protein has been unknown. Paralleling the mRNA levels, Pdcd4 protein levels were greater in P− than in P+ cells. Pdcd4 mRNA was also expressed at greater levels in the less progressed keratinocytes of another mouse skin neoplastic progression series. To test the hypothesis that Pdcd4 inhibits tumor promoter-induced transformation, stable cell lines expressing antisense Pdcd4 were generated from parental P− cells. The reduction of Pdcd4 proteins in antisense lines was accompanied by acquisition of a transformation-sensitive (P+) phenotype. The antisense-transfected cells were reverted to their initial P− phenotype by overexpression of a Pdcd4 sense fragment. These observations demonstrate that the Pdcd4 protein inhibits neoplastic transformation.
Resumo:
The assumption that genes encoding tyrosine kinase receptors could play a role in human cancers has been confirmed by the identification of oncogenic mutations in the kinase domain of RET and KIT. Recently, homologous residues were found mutated in MET, in papillary renal carcinomas (PRCs). The link coupling these genetic lesions to cellular transformation is still unclear. METPRC mutations result in increased kinase activity and—in some instances, i.e., M1250T substitution—in changes in substrate specificity. A direct correlation occurs between the transforming potential of METPRC mutants and their ability to constitutively associate with signal transducers through two phosphorylated tyrosines (Y1349VHVNATY1356VNV) located in the receptor tail. Substitution of these “docking tyrosines” with phenylalanines leaves unaffected the altered properties of the kinase but abrogates transformation and invasiveness in vitro. Uncoupling the receptor from signal transducers with a tyrosine-phosphorylated peptide derivative (YpVNV) inhibits invasive growth induced by METPRC mutants. These data indicate that constitutive receptor coupling to downstream signal transducers is a key mechanism in neoplastic transformation driven by mutated MET and suggest a therapeutic strategy to target neoplastic diseases associated with this oncogene.
Resumo:
Genetic inactivation of the transforming growth factor-β (TGF-β) signaling pathway can accelerate tumor progression in the mouse epidermal model of multistage carcinogenesis. By using an in vitro model of keratinocyte transformation that parallels in vivo malignant conversion to squamous cell carcinoma, we show that v-rasHa transduced primary TGF-β1−/− keratinocytes and keratinocytes expressing a TGF-β type II dominant-negative receptor transgene have significantly higher frequencies of spontaneous transformation than control genotypes. Malignant transformation in the TGF-β1−/− keratinocytes is preceded by aneuploidy and accumulation of chromosomal aberrations. Similarly, transient inactivation of TGF-β signaling with a type II dominant-negative receptor adenovirus causes rapid changes in ploidy. Exogenous TGF-β1 can suppress aneuploidy, chromosome breaks, and malignant transformation of the TGF-β1−/− keratinocytes at concentrations that do not significantly arrest cell proliferation. These results point to genomic instability as a mechanism by which defects in TGF-β signaling could accelerate tumor progression in mouse multistage carcinogenesis.
Resumo:
Aneuploidy or chromosome imbalance is the most massive genetic abnormality of cancer cells. It used to be considered the cause of cancer when it was discovered more than 100 years ago. Since the discovery of the gene, the aneuploidy hypothesis has lost ground to the hypothesis that mutation of cellular genes causes cancer. According to this hypothesis, cancers are diploid and aneuploidy is secondary or nonessential. Here we reexamine the aneuploidy hypothesis in view of the fact that nearly all solid cancers are aneuploid, that many carcinogens are nongenotoxic, and that mutated genes from cancer cells do not transform diploid human or animal cells. By regrouping the gene pool—as in speciation—aneuploidy inevitably will alter many genetic programs. This genetic revolution can explain the numerous unique properties of cancer cells, such as invasiveness, dedifferentiation, distinct morphology, and specific surface antigens, much better than gene mutation, which is limited by the conservation of the existing chromosome structure. To determine whether aneuploidy is a cause or a consequence of transformation, we have analyzed the chromosomes of Chinese hamster embryo (CHE) cells transformed in vitro. This system allows (i) detection of transformation within 2 months and thus about 5 months sooner than carcinogenesis and (ii) the generation of many more transformants per cost than carcinogenesis. To minimize mutation of cellular genes, we have used nongenotoxic carcinogens. It was found that 44 out of 44 colonies of CHE cells transformed by benz[a]pyrene, methylcholanthrene, dimethylbenzanthracene, and colcemid, or spontaneously were between 50 and 100% aneuploid. Thus, aneuploidy originated with transformation. Two of two chemically transformed colonies tested were tumorigenic 2 months after inoculation into hamsters. The cells of transformed colonies were heterogeneous in chromosome number, consistent with the hypothesis that aneuploidy can perpetually destabilize the chromosome number because it unbalances the elements of the mitotic apparatus. Considering that all 44 transformed colonies analyzed were aneuploid, and the early association between aneuploidy, transformation, and tumorigenicity, we conclude that aneuploidy is the cause rather than a consequence of transformation.
Resumo:
To accelerate gene isolation from plants by positional cloning, vector systems suitable for both chromosome walking and genetic complementation are highly desirable. Therefore, we developed a transformation-competent artificial chromosome (TAC) vector, pYLTAC7, that can accept and maintain large genomic DNA fragments stably in both Escherichia coli and Agrobacterium tumefaciens. Furthermore, it has the cis sequences required for Agrobacterium-mediated gene transfer into plants. We cloned large genomic DNA fragments of Arabidopsis thaliana into the vector and showed that most of the DNA fragments were maintained stably. Several TAC clones carrying 40- to 80-kb genomic DNA fragments were transferred back into Arabidopsis with high efficiency and shown to be inherited faithfully among the progeny. Furthermore, we demonstrated the practical utility of this vector system for positional cloning in Arabidopsis. A TAC contig was constructed in the region of the SGR1 locus, and individual clones with ca. 80-kb inserts were tested for their ability to complement the gravitropic defects of a homozygous mutant line. Successful complementation enabled the physical location of SGR1 to be delimited with high precision and confidence.
Resumo:
Chemically induced skin carcinomas in mice are a paradigm for epithelial neoplasia, where oncogenic ras mutations precede p53 and INK4a/ARF mutations during the progression toward malignancy. To explore the biological basis for these genetic interactions, we studied cellular responses to oncogenic ras in primary murine keratinocytes. In wild-type keratinocytes, ras induced a cell-cycle arrest that displayed some features of terminal differentiation and was accompanied by increased expression of the p19ARF, p16INK4a, and p53 tumor suppressors. In ARF-null keratinocytes, ras was unable to promote cell-cycle arrest, induce differentiation markers, or properly activate p53. Although oncogenic ras produced a substantial increase in both nucleolar and nucleoplasmic p19ARF, Mdm2 did not relocalize to the nucleolus or to nuclear bodies but remained distributed throughout the nucleoplasm. This result suggests that p19ARF can activate p53 without overtly affecting Mdm2 subcellular localization. Nevertheless, like p53-null keratinocytes, ARF-null keratinocytes were transformed by oncogenic ras and rapidly formed carcinomas in vivo. Thus, oncogenic ras can activate the ARF-p53 program to suppress epithelial cell transformation. Disruption of this program may be important during skin carcinogenesis and the development of other carcinomas.