886 resultados para genetic risk
Resumo:
Bipolar disorder (BD) and attention deficit/hyperactivity disorder (ADHD) may share common genetic risk factors as indicated by the high co-morbidity of BD and ADHD, their phenotypic overlap especially in pediatric populations, the high heritability of both disorders, and the co-occurrence in families. We therefore examined whether known polygenic BD risk alleles are associated with ADHD. We chose the eight best SNPs of the recent genome-wide association study (GWAS) of BD patients of German ancestry and the nine SNPs from international GWAS meeting a 'genome-wide significance' level of α = 5 × 10(-8). A GWAS was performed in 495 ADHD children and 1,300 population-based controls using HumanHap550v3 and Human660 W-Quadv1 BeadArrays. We found no significant association of childhood ADHD with single BD risk alleles surviving adjustment for multiple testing. Yet, risk alleles for BD and ADHD were directionally consistent at eight of nine loci with the strongest support for three SNPs in or near NCAN, BRE, and LMAN2L. The polygene analysis for the BP risk alleles at all 14 loci indicated a higher probability of being a BD risk allele carrier in the ADHD cases as compared to the controls. At a moderate power to detect association with ADHD, if true effects were close to estimates from GWAS for BD, our results suggest that the possible contribution of BD risk variants to childhood ADHD risk is considerably lower than for BD. Yet, our findings should encourage researchers to search for common genetic risk factors in BD and childhood ADHD in future studies.
Resumo:
Abacavir therapy is associated with significant drug hypersensitivity in approximately 8% of recipients, with retrospective studies indicating a strong genetic association with the HLA-B*5701 allele. In this prospective study, involving 260 abacavir-naive individuals (7.7% of whom were positive for HLA-B*5701), we confirm the usefulness of genetic risk stratification, with no cases of abacavir hypersensitivity among 148 HLA-B*5701-negative recipients.
Resumo:
Prostate cancer (PC) is a significant economic and health burden in the U.S. and Europe but its causes are largely unknown. The most significant risk factors (after gender) are age and family history of the disease. A gene with high penetrance but low frequency on chromosome 1q, HPC 1, has been suggested to cause a proportion of the familial aggregation of PC but other more common genes, conferring less risk, are also thought to contribute to disease predisposition. We have pursued a strategy to study both types of genetic risk in PC. To identify high penetrance genes, affected men from thirteen families have been genotyped for genetic linkage analysis at six microsatellite markers spanning 45 cM of 1q24-25. Both LOD score and non-parametric statistics provide no significant support for HPC1 in this genomic region, although 3 of the families did combine to produce a LOD score of 0.9. These families will be included in a genome wide search for other PC predisposition genes as part of a multinational collaboration.^ For study of common genetic factors in PC development, leukocyte DNA samples from an unselected series of 55 patients and 67 controls have been examined for genetic differences in two other candidate genes, the androgen receptor gene, hAR, at Xq11-12, and the vitamin D receptor gene, hVDR, at 12q12-14. hAR was typed for two trinucleotide repeat length polymorphisms, (CAG)$\rm\sb{n}$ and (GGC)$\rm\sb{n},$ encoding polyglutamine and polyglycine tracts, respectively, which have been implicated in PC susceptibility. These data, combined with similarly processed patients and controls from the U.K. show no consistent association of allele length with PC risk. A novel finding, however, has been a significant association between the number of GGC repeats and the length of time between diagnosis and relapse in stage T1-T4 Caucasian patients irrespective of therapy and age of the patient. Of 49 patients who relapsed out of 108 entering the study, those with 16 or fewer GGC repeats had an average relapse-free-period of 101 (+/$-$7.7) months while for those with more than 16 repeats the period averaged 48 (+/$-$2.9) months, a difference of 2.1 fold or 4.4 years.^ The second gene, hVDR, was genotyped at two polymorphisms, a synonymous C/T substitution in exon 9 identified by differential TaqI enzymatic digestion and a variable length polyA tract in the 3$\sp\prime$ UTR. Although these polymorphisms are in strong linkage disequilibrium only the polyA region showed a possible association with PC risk. Men homozygous for alleles with fewer than 18 A's had an increased risk (OR = 3.0, p = 0.0578) compared to controls. This result is opposite to the findings of others and may either indicate off-setting random errors which together balance out to no significant overall effect or reflect more complex genetic and/or environmental associations.^ Overall, this research suggests that single gene familial predisposition may be less prominent in PC than in other cancers and that the characteristics of PC pathology may be useful in identifying the effects of common genetic factors. ^
Resumo:
Coronary heart disease (CHD) is the leading cause of death in the United States. Recently, renin-angiotensin system (RAS) was found associated with atherosclerosis formation, with angiotensin II inducing vascular smooth muscle cell growth and migration, platelet activation and aggregation, and stimulation of plasminogen activator inhibitor-1. Angiotensin II is converted from angiotensin I by angiotensin I-converting enzyme (ACE) and this enzyme is mainly genetically determined. The ACE gene has been assigned to chromosome 17q23 and an insertion/deletion (I/D)polymorphism has been characterized by the presence/absence of a 287 bp fragment in intron 16 of the gene. The two alleles form three genotypes, namely, DD, ID and II and the DD genotype has been linked to higher plasma ACE levels and cell ACE activity.^ In this study, the association between the ACE I/D polymorphism and carotid artery wall thickness measured by B-mode ultrasound was investigated in a biracial sample, and the association between the gene and incident CHD was investigated in whites and if the gene-CHD association in whites, if any, was due to the gene effect on atherosclerosis. The study participants are from the prospective Atherosclerosis Risk in Communities (ARIC) Study, including adults aged 45 to 65 years. The present dissertation used a matched case-control design for studying the associations of the ACE gene with carotid artery atherosclerosis and an unmatched case-control design for the association of the gene with CHD. A significant recessive effect of the D allele on carotid artery thickness was found in blacks (OR = 3.06, 95% C.I: 1.11-8.47, DD vs. ID and II) adjusting for age, gender, cigarette smoking, LDL-cholesterol and diabetes. No similar associations were found in whites. The ACE I/D polymorphism is significantly associated with coronary heart disease in whites, and while stratifying data by carotid artery wall thickness, the significant associations were only observed in thin-walled subgroups. Assuming a recessive effect of the D allele, odds ratio was 2.84 (95% C.I:1.17-6.90, DD vs. ID and II) and it was 2.30 (95% C.I:1.22-4.35, DD vs. ID vs. II) assuming a codominant effect of the D allele. No significant associations were observed while comparing thick-walled CHD cases with thin-walled controls. Following conclusions could be drawn: (1) The ACE I/D polymorphism is unlikely to confer appreciable increase in the risk of carotid atherosclerosis in US whites, but may increases the risk of carotid atherosclerosis in blacks. (2) ACE I/D polymorphism is a genetic risk factor for incident CHD in US whites and this effect is separate from the chronic process of atherosclerosis development. Finally, the associations observed here are not causal, since the I/D polymorphism is in an intron, where no ACE proteins are encoded. ^
Resumo:
STUDY OBJECTIVE Prior research has identified five common genetic variants associated with narcolepsy with cataplexy in Caucasian patients. To replicate and/or extend these findings, we have tested HLA-DQB1, the previously identified 5 variants, and 10 other potential variants in a large European sample of narcolepsy with cataplexy subjects. DESIGN Retrospective case-control study. SETTING A recent study showed that over 76% of significant genome-wide association variants lie within DNase I hypersensitive sites (DHSs). From our previous GWAS, we identified 30 single nucleotide polymorphisms (SNPs) with P < 10(-4) mapping to DHSs. Ten SNPs tagging these sites, HLADQB1, and all previously reported SNPs significantly associated with narcolepsy were tested for replication. PATIENTS AND PARTICIPANTS For GWAS, 1,261 narcolepsy patients and 1,422 HLA-DQB1*06:02-matched controls were included. For HLA study, 1,218 patients and 3,541 controls were included. MEASUREMENTS AND RESULTS None of the top variants within DHSs were replicated. Out of the five previously reported SNPs, only rs2858884 within the HLA region (P < 2x10(-9)) and rs1154155 within the TRA locus (P < 2x10(-8)) replicated. DQB1 typing confirmed that DQB1*06:02 confers an extraordinary risk (odds ratio 251). Four protective alleles (DQB1*06:03, odds ratio 0.17, DQB1*05:01, odds ratio 0.56, DQB1*06:09 odds ratio 0.21, DQB1*02 odds ratio 0.76) were also identified. CONCLUSION An overwhelming portion of genetic risk for narcolepsy with cataplexy is found at DQB1 locus. Since DQB1*06:02 positive subjects are at 251-fold increase in risk for narcolepsy, and all recent cases of narcolepsy after H1N1 vaccination are positive for this allele, DQB1 genotyping may be relevant to public health policy.
Resumo:
Genome-wide association studies (GWAS) have revealed genetic determinants of iron metabolism, but correlation of these with clinical phenotypes is pending. Homozygosity for HFE C282Y is the predominant genetic risk factor for hereditary hemochromatosis (HH) and may cause liver cirrhosis. However, this genotype has a low penetrance. Thus, detection of yet unknown genetic markers that identify patients at risk of developing severe liver disease is necessary for better prevention. Genetic loci associated with iron metabolism (TF, TMPRSS6, PCSK7, TFR2 and Chr2p14) in recent GWAS and liver fibrosis (PNPLA3) in recent meta-analysis were analyzed for association with either liver cirrhosis or advanced fibrosis in 148 German HFE C282Y homozygotes. Replication of associations was sought in additional 499 Austrian/Swiss and 112 HFE C282Y homozygotes from Sweden. Only variant rs236918 in the PCSK7 gene (proprotein convertase subtilisin/kexin type 7) was associated with cirrhosis or advanced fibrosis (P = 1.02 × 10(-5)) in the German cohort with genotypic odds ratios of 3.56 (95% CI 1.29-9.77) for CG heterozygotes and 5.38 (95% CI 2.39-12.10) for C allele carriers. Association between rs236918 and cirrhosis was confirmed in Austrian/Swiss HFE C282Y homozygotes (P = 0.014; ORallelic = 1.82 (95% CI 1.12-2.95) but not in Swedish patients. Post hoc combined analyses of German/Swiss/Austrian patients with available liver histology (N = 244, P = 0.00014, ORallelic = 2.84) and of males only (N = 431, P = 2.17 × 10(-5), ORallelic = 2.54) were consistent with the premier finding. Association between rs236918 and cirrhosis was not confirmed in alcoholic cirrhotics, suggesting specificity of this genetic risk factor for HH. PCSK7 variant rs236918 is a risk factor for cirrhosis in HH patients homozygous for the HFE C282Y mutation.
Resumo:
Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65,046 European population controls (5/393 cases versus 32/65,046 controls; Fisher's exact test P = 2.83 × 10(-6), odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10(-4)). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical RE.
Resumo:
The aim of this guidance paper of the European Psychiatric Association is to provide evidence-based recommendations on the early detection of a clinical high risk (CHR) for psychosis in patients with mental problems. To this aim, we conducted a meta-analysis of studies reporting on conversion rates to psychosis in non-overlapping samples meeting any at least any one of the main CHR criteria: ultra-high risk (UHR) and/or basic symptoms criteria. Further, effects of potential moderators (different UHR criteria definitions, single UHR criteria and age) on conversion rates were examined. Conversion rates in the identified 42 samples with altogether more than 4000 CHR patients who had mainly been identified by UHR criteria and/or the basic symptom criterion ‘cognitive disturbances’ (COGDIS) showed considerable heterogeneity. While UHR criteria and COGDIS were related to similar conversion rates until 2-year follow-up, conversion rates of COGDIS were significantly higher thereafter. Differences in onset and frequency requirements of symptomatic UHR criteria or in their different consideration of functional decline, substance use and co-morbidity did not seem to impact on conversion rates. The ‘genetic risk and functional decline’ UHR criterion was rarely met and only showed an insignificant pooled sample effect. However, age significantly affected UHR conversion rates with lower rates in children and adolescents. Although more research into potential sources of heterogeneity in conversion rates is needed to facilitate improvement of CHR criteria, six evidence-based recommendations for an early detection of psychosis were developed as a basis for the EPA guidance on early intervention in CHR states.
Resumo:
Hypothyroidism is a complex clinical condition found in both humans and dogs, thought to be caused by a combination of genetic and environmental factors. In this study we present a multi-breed analysis of predisposing genetic risk factors for hypothyroidism in dogs using three high-risk breeds-the Gordon Setter, Hovawart and the Rhodesian Ridgeback. Using a genome-wide association approach and meta-analysis, we identified a major hypothyroidism risk locus shared by these breeds on chromosome 12 (p = 2.1x10-11). Further characterisation of the candidate region revealed a shared ~167 kb risk haplotype (4,915,018-5,081,823 bp), tagged by two SNPs in almost complete linkage disequilibrium. This breed-shared risk haplotype includes three genes (LHFPL5, SRPK1 and SLC26A8) and does not extend to the dog leukocyte antigen (DLA) class II gene cluster located in the vicinity. These three genes have not been identified as candidate genes for hypothyroid disease previously, but have functions that could potentially contribute to the development of the disease. Our results implicate the potential involvement of novel genes and pathways for the development of canine hypothyroidism, raising new possibilities for screening, breeding programmes and treatments in dogs. This study may also contribute to our understanding of the genetic etiology of human hypothyroid disease, which is one of the most common endocrine disorders in humans.
Resumo:
Prostate cancer (PrCa) is a leading cause of morbidity and mortality, yet the etiology remains uncertain. Meta-analyses show that PrCa risk is reduced by 16% in men with type 2 diabetes (T2D), but the mechanism is unknown. Recent genome-wide association studies and meta-analyses have found single nucleotide polymorphisms (SNPs) that consistently predict T2D risk. We evaluated associations of incident PrCa with 14 T2D SNPs in the Atherosclerosis Risk in Communities (ARIC) study. From 1987-2000, there were 397 incident PrCa cases ascertained from state or local cancer registries among 6,642 men (1,560 blacks and 5,082 whites) aged 45-64 years at baseline. Genotypes were determined by TaqMan assay. Cox proportional hazards models were used to assess the association between PrCa and increasing number of T2D risk-raising alleles for individual SNPs and for genetic risk scores (GRS) comprised of the number of T2D risk-raising alleles across SNPs. Two-way gene-gene interactions were evaluated with likelihood ratio tests. Using additive genetic models, the T2D risk-raising allele was associated with significantly reduced risk of PrCa for IGF2BP2 rs4402960 (hazard ratio [HR]=0.79; P=0.07 among blacks only), SLC2A2 rs5400 (race-adjusted HR=0.85; P=0.05) and UCP2 rs660339 (race-adjusted HR=0.84; P=0.02), but significantly increased risk of PrCa for CAPN10 rs3792267 (race-adjusted HR=1.20; P=0.05). No other SNPs were associated with PrCa using an additive genetic model. However, at least one copy of the T2D risk-raising allele for TCF7L2 rs7903146 was associated with reduced PrCa risk using a dominant genetic model (race-adjusted HR=0.79; P=0.03). These results imply that the T2D-PrCa association may be partly due to shared genetic variation, but these results should be verified since multiple tests were performed. When the combined, additive effects of these SNPs were tested using a GRS, there was nearly a 10% reduction in risk of PrCa per T2D risk-raising allele (race-adjusted HR=0.92; P=0.02). SNPs in IGF2BP2, KCNJ11 and SLC2A2 were also involved in multiple synergistic gene-gene interactions on a multiplicative scale. In conclusion, it appears that the T2D-PrCa association may be due, in part, to common genetic variation. Further knowledge of T2D gene-PrCa mechanisms may improve understanding of PrCa etiology and may inform PrCa prevention and treatment.^
Resumo:
Functional gastrointestinal disorders (FGIDs) are defined as ailments of the mid or lower gastrointestinal tract which are not attributable to any discernable anatomic or biochemical defects.1 FGIDs include functional bowel disorders, also known as persisting abdominal symptoms (PAS). Irritable bowel syndrome (IBS) is one of the most common illnesses classified under PAS.2,3 This is the first prospective study that looks at the etiology and pathogenesis of post-infectious PAS in the context of environmental exposure and genetic susceptibility in a cohort of US travelers to Mexico. Our objective was to identify infectious, genetic and environmental factors that predispose to post infectious PAS. ^ Methods. This is a secondary data analysis of a prospective study on a cohort of 704 healthy North American tourists to Cuernavaca, Morelos and Guadalajara, Jalisco in Mexico. The subjects at risk for Travelers' diarrhea were assessed for chronic abdominal symptoms on enrollment and six months after the return to the US. ^ Outcomes. PAS was defined as disturbances of mid and lower gastrointestinal system without any known pathological or radiological abnormalities, or infectious, or metabolic causes. It refers to functional bowel disease, category C of functional gastrointestinal diseases as defined by the Rome II criterion. PAS was sub classified into Irritable bowel syndrome (IBS) and functional abdominal disease (FAD). ^ IBS is defined as recurrent abdominal pain or discomfort present at least 25% and associated with improvement with defecation, change in frequency and form of stool. FAD encompasses other abdominal symptoms of chronic nature that do not meet the criteria for IBS. It includes functional diarrhea, functional constipation, functional bloating: and unspecified bowel symptoms. ^ Results. Among the 704 travelers studied, there were 202 cases of PAS. The PAS cases included 175 cases of FAD and 27 cases of IBS. PAS was more frequent among subjects who developed traveler's diarrhea in Mexico compared to travelers who remained healthy during the short term visit to Mexico (52 vs. 38; OR = 1.8; CI, 1.3–2.5, P < 0.001). A statistically significant difference was noted in the mean age of subjects with PAS compared to healthy controls (28 vs. 34 yrs; OR = 0.97, CI, 0.95–0.98; P < 0.001). Travelers who experienced multiple episodes, a later onset of diarrhea in Mexico and passed greater numbers of unformed stools were more likely to be identified in PAS group at six months. Participants who developed TD caused by enterotoxigenic E.coli in Mexico showed a 2.6 times higher risk of developing FAD (P = 0.003). Infection with Providencia ssp. also demonstrated a greater risk to developing PAS. Subjects who sought treatment for diarrhea while in Mexico also displayed a significantly lower frequency of IBS at six months follow up (OR = 0.30; CI, 0.10–0.80; P = 0.02). ^ Forty six SNPs belonging to 14 genes were studied. Seven SNPs were associated with PAS at 6 months. These included four SNPs from the Caspase Recruitment Domain-Containing Protein 15 gene (CARD15), two SNPs from Surfactant Pulmonary-Associated Protein D gene (SFTPD) and one from Decay-Accelerating Factor For Complement gene (CD55). A genetic risk score (GRS) was composed based on the 7 SNPs that showed significant association with PAS. A 20% greater risk for PAS was noted for every unit increase in GRS. The risk increased by 30% for IBS. The mean GRS was high for IBS (2.2) and PAS (1.1) compared to healthy controls (0.51). These data suggests a role for these genetic polymorphisms in defining the susceptibility to PAS. ^ Conclusions. The study allows us to identify individuals at risk for developing post infectious IBS (PI-IBS) and persisting abdominal symptoms after an episode of TD. The observations in this study will be of use in developing measures to prevent and treat post-infectious irritable bowel syndrome among travelers including pre-travel counseling, the use of vaccines, antibiotic prophylaxis or the initiation of early antimicrobial therapy. This study also provides insights into the pathogenesis of post infectious PAS and IBS. (Abstract shortened by UMI.)^
Resumo:
Abnormalities of prefrontal cortical function are prominent features of schizophrenia and have been associated with genetic risk, suggesting that susceptibility genes for schizophrenia may impact on the molecular mechanisms of prefrontal function. A potential susceptibility mechanism involves regulation of prefrontal dopamine, which modulates the response of prefrontal neurons during working memory. We examined the relationship of a common functional polymorphism (Val108/158 Met) in the catechol-O-methyltransferase (COMT) gene, which accounts for a 4-fold variation in enzyme activity and dopamine catabolism, with both prefrontally mediated cognition and prefrontal cortical physiology. In 175 patients with schizophrenia, 219 unaffected siblings, and 55 controls, COMT genotype was related in allele dosage fashion to performance on the Wisconsin Card Sorting Test of executive cognition and explained 4% of variance (P = 0.001) in frequency of perseverative errors. Consistent with other evidence that dopamine enhances prefrontal neuronal function, the load of the low-activity Met allele predicted enhanced cognitive performance. We then examined the effect of COMT genotype on prefrontal physiology during a working memory task in three separate subgroups (n = 11–16) assayed with functional MRI. Met allele load consistently predicted a more efficient physiological response in prefrontal cortex. Finally, in a family-based association analysis of 104 trios, we found a significant increase in transmission of the Val allele to the schizophrenic offspring. These data suggest that the COMT Val allele, because it increases prefrontal dopamine catabolism, impairs prefrontal cognition and physiology, and by this mechanism slightly increases risk for schizophrenia.
Resumo:
The goal of this study is to better understand the genetic basis of Reading Disability (RD) and Attention Deficit Hyperactivity Disorder (ADHD) by examining molecular G x E interactions with parental education for each disorder. Research indicates that despite sharing genetic risk factors, RD and ADHD are influenced by different types of G x E interactions with parental education - a diathesis stress interaction in the case of ADHD and a bioecological interaction in RD. In order to resolve this apparent paradox, we conducted a preliminary study using behavioral genetic methods to test for G x E interactions in RD and the inattentive subtype of ADHD (ADHD-I) in the same sample of monozygotic and dizygotic Colorado Learning Disabilities Research Center same-sex twin pairs (DeFries et al., 1997), and our findings were consistent with the literature. We posited a genetic hypothesis for this opposite pattern of interactions, which suggests that only genes specific to each disorder enter into these opposite interactions, not the shared genes underlying their comorbidity. This study sought to further investigate this paradox using molecular genetics methods. We examined multiple candidate genes identified for RD or related language phenotypes and those identified for ADHD for G x E interactions with parental education. The specific aims of this study were as follows: 1) partition known risk alleles for RD and/or related language phenotypes and ADHD-I into those which are pleiotropic and non-pleiotropic by testing each risk allele for association with both RD and ADHD-I, 2) explore the main effects of parental education on both RD and ADHD-I, 3) address G-E correlations, and 4) conduct exploratory G x E interaction analyses in order to test the genetic hypothesis. Analyses suggested a number of pleiotropic genes that influence both RD and ADHD; however, results did not remain after correcting for multiple comparisons. Although exploratory G x E interaction findings were not significant after multiple comparison correction, results suggested a G x E interaction in the bioecological direction with KIAA0319, parental education, and ADHD-I. Given the limited power in the current study, replication of these findings with larger samples is necessary.
Resumo:
AIM Anthracycline-induced cardiotoxicity (ACT) occurs in 57% of treated patients and remains an important limitation of anthracycline-based chemotherapy. In various genetic association studies, potential genetic risk markers for ACT have been identified. Therefore, we developed evidence-based clinical practice recommendations for pharmacogenomic testing to further individualize therapy based on ACT risk. METHODS We followed a standard guideline development process; including a systematic literature search, evidence synthesis and critical appraisal, and the development of clinical practice recommendations with an international expert group. RESULTS RARG rs2229774, SLC28A3 rs7853758 and UGT1A6 rs17863783 variants currently have the strongest and the most consistent evidence for association with ACT. Genetic variants in ABCC1, ABCC2, ABCC5, ABCB1, ABCB4, CBR3, RAC2, NCF4, CYBA, GSTP1, CAT, SULT2B1, POR, HAS3, SLC22A7, SCL22A17, HFE and NOS3 have also been associated with ACT, but require additional validation. We recommend pharmacogenomic testing for the RARG rs2229774 (S427L), SLC28A3 rs7853758 (L461L) and UGT1A6*4 rs17863783 (V209V) variants in childhood cancer patients with an indication for doxorubicin or daunorubicin therapy (Level B - moderate). Based on an overall risk stratification, taking into account genetic and clinical risk factors, we recommend a number of management options including increased frequency of echocardiogram monitoring, follow-up, as well as therapeutic options within the current standard of clinical practice. CONCLUSIONS Existing evidence demonstrates that genetic factors have the potential to improve the discrimination between individuals at higher and lower risk of ACT. Genetic testing may therefore support both patient care decisions and evidence development for an improved prevention of ACT.
Resumo:
Multiple sclerosis (MS) is a prevalent neurological disease of complex etiology. Here, we describe the characterization of a multi-incident MS family that nominated a rare missense variant (p.G420D) in plasminogen (PLG) as a putative genetic risk factor for MS. Genotyping of PLG p.G420D (rs139071351) in 2160 MS patients, and 886 controls from Canada, identified 10 additional probands, two sporadic patients and one control with the variant. Segregation in families harboring the rs139071351 variant, identified p.G420D in 26 out of 30 family members diagnosed with MS, 14 unaffected parents, and 12 out of 30 family members not diagnosed with disease. Despite considerably reduced penetrance, linkage analysis supports cosegregation of PLG p.G420D and disease. Genotyping of PLG p.G420D in 14446 patients, and 8797 controls from Canada, France, Spain, Germany, Belgium, and Austria failed to identify significant association with disease (P = 0.117), despite an overall higher prevalence in patients (OR = 1.32; 95% CI = 0.93-1.87). To assess whether additional rare variants have an effect on MS risk, we sequenced PLG in 293 probands, and genotyped all rare variants in cases and controls. This analysis identified nine rare missense variants, and although three of them were exclusively observed in MS patients, segregation does not support pathogenicity. PLG is a plausible biological candidate for MS owing to its involvement in immune system response, blood-brain barrier permeability, and myelin degradation. Moreover, components of its activation cascade have been shown to present increased activity or expression in MS patients compared to controls; further studies are needed to clarify whether PLG is involved in MS susceptibility.