895 resultados para gene regulatory network


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bistability arises within a wide range of biological systems from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We introduce a genetic programming (GP) approach for evolving genetic networks that demonstrate desired dynamics when simulated as a discrete stochastic process. Our representation of genetic networks is based on a biochemical reaction model including key elements such as transcription, translation and post-translational modifications. The stochastic, reaction-based GP system is similar but not identical with algorithmic chemistries. We evolved genetic networks with noisy oscillatory dynamics. The results show the practicality of evolving particular dynamics in gene regulatory networks when modelled with intrinsic noise.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we construct a mathematical model for the genetic regulatory network of the lactose operon. This mathematical model contains transcription and translation of the lactose permease (LacY) and a reporter gene GFP. The probability of transcription of LacY is determined by 14 binding states out of all 50 possible binding states of the lactose operon based on the quasi-steady-state assumption for the binding reactions, while we calculate the probability of transcription for the reporter gene GFP based on 5 binding states out of 19 possible binding states because the binding site O2 is missing for this reporter gene. We have tested different mechanisms for the transport of thio-methylgalactoside (TMG) and the effect of different Hill coefficients on the simulated LacY expression levels. Using this mathematical model we have realized one of the experimental results with different LacY concentrations, which are induced by different concentrations of TMG.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coloured foliage due to anthocyanin pigments (bronze/red/black) is an attractive trait that is often lacking in many bedding, ornamental and horticultural plants. Apples (Malus × domestica) containing an allelic variant of the anthocyanin regulator, Md-MYB10R6, are highly pigmented throughout the plant, due to autoregulation by MYB10 upon its own promoter. We investigated whether Md-MYB10R6 from apple is capable of functioning within the heterologous host Petunia hybrida to generate plants with novel pigmentation patterns. The Md-MYB10R6 transgene (MYB10–R6pro:MYB10:MYB10term) activated anthocyanin synthesis when transiently expressed in Antirrhinumroseadorsea petals and petunia leaf discs. Stable transgenic petunias containing Md-MYB10R6 lacked foliar pigmentation but had coloured flowers, complementing the an2 phenotype of ‘Mitchell’ petunia. The absence of foliar pigmentation was due to the failure of the Md-MYB10R6 gene to self-activate in vegetative tissues, suggesting that additional protein partners are required for Md-MYB10 to activate target genes in this heterologous system. In petunia flowers, where endogenous components including MYB-bHLH-WDR (MBW) proteins were present, expression of the Md-MYB10R6 promoter was initiated, allowing auto-regulation to occur and activating anthocyanin production. Md-MYB10 is capable of operating within the petunia MBW gene regulation network that controls the expression of the anthocyanin biosynthesis genes, AN1 (bHLH) and MYBx (R3-MYB repressor) in petals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Forkhead box class O (FoxO) transcription factors are members of the forkhead box transcription factor superfamily, with orthologues in various species such as human, worm and fly. FoxO proteins are key regulators of growth, metabolism, stress resistance and, consequently, life span. FoxOs integrate signals from different pathways, e.g. the growth controlling Insulin-TOR signaling pathway and the stress induced JNK and Hippo signaling pathways. FoxO proteins have evolved to guide the cellular response to varying energy and stress conditions by inducing the expression of genes involved in the regulation of growth and metabolism. This work has aimed to deepen the understanding of how FoxO executes its biological functions. A particular emphasis has been laid to its role in growth control. Specifically, evidence is presented indicating that FoxO restricts tissue growth in a situation when TOR signaling is high. This finding can have implications in a human condition called Tuberous sclerosis, manifested by multiple benign tumors. Further, it is shown that FoxO directly binds to the promoter and regulates the expression of a Drosophila Adenylate cyclase gene, ac76e, which in turn modulates the fly s development and growth systemically. These results strengthen FoxOs position among central size regulators as it is able to operate at the level of individual cells as well as in the whole organism. Finally, an attempt to reveal the regulatory network upstream of FoxO has been carried out. Several putative FoxO activity regulators were identified in an RNAi screen of Drosophila kinases and phosphatases. The results underscore that FoxO is regulated through an elaborate network, ensuring the correct execution of key cellular processes in metabolism and response to stress. Overall, the evidence provided in this study strengthens our view of FoxO as a key integrator of growth and stress signals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Erwinia carotovora subsp. carotovora (Ecc) is a Gram-negative enterobacterium that causes soft-rot in potato and other crops. The main virulence determinants, the extracellular plant cell wall -degrading enzymes (PCWDEs), lead to plant tissue maceration. In order to establish a successful infection the production of PCWDEs are controlled by a complex regulatory network, including both specific and global activators and repressors. One of the most important virulence regulation systems in Ecc is mediated by quorum sensing (QS), which is a population density -dependent cell-to-cell communication mechanism used by many Gram-negative bacteria. In these bacteria N-acylhomoserine lactones (AHSL), act as diffusible signaling molecules enabling communication between bacterial cells. The AHSLs are structurally diverse and differ in their acyl chain length. This gives the bacteria signaling specificity and enables the recognition and communication within its own species. In order to detect and respond to the AHSLs the bacteria use QS regulators, LuxR-type proteins. The aim of this study was to get a deeper understanding of the Ecc QS system. In the first part of the study we showed that even different strains of Ecc use different dialects and of physiological concentrations, only the cognate AHSL with the correct acyl chain is recognized as a signal that can switch on virulence genes. The molecular basis of the substrate specificity of the AHSL synthase ExpI was investigated in order to recognize the acyl chain length specificity determinants of distinct AHSL synthases. Several critical residues that define the size of the substrate-binding pocket were identified. We demonstrated that in the ExpISCC1 mutations M127T and F69L are sufficient to change the N-3-oxohexanoyl-L-homoserine lactone producing ExpISCC1 to an N-3-oxooctanoyl-L-homoserine lactone (3-oxo-C8-HSL) producing enzyme. In the second study the means of sensing specificity and response to the AHSL signaling molecule were investigated. We demonstrated that the AHSL receptor ExpR1 of Ecc strain SCC3193 has strict specificity for the cognate AHSL 3-oxo-C8-HSL. In addition we identified a second AHSL receptor ExpR2 with a novel property to sense AHSLs with different acyl chain lengths. In the absence of AHSLs ExpR1 and ExpR2 were found to act synergistically to repress the virulence gene expression. This repression was shown to be released by addition of AHSLs and appears to be largely mediated by the global negative regulator RsmA. In the third study random transposon mutagenesis was used to widen the knowledge of the Ecc QS regulon. Two new QS-controlled target genes, encoding a DNA-binding regulator Hor and a plant ferredoxin-like protein FerE, were identified. The QS control of the identified genes was executed by the QS regulators ExpR1 and ExpR2 and as expression of PCWDE genes mediated by the RsmA repressor. Hor was shown to contribute to bacterial virulence at least partly through its control of PCWDE production, while FerE was shown to contribute to oxidative stress tolerance and in planta fitness of the bacteria. In addition our results suggest that QS is central to the control of oxidative stress tolerance in Ecc. In conclusion, these results indicate that Ecc strain SCC3193 is able to react and respond both to the cognate AHSL signal and the signals produced by other bacterial species, in order to control a wide variety of functions in the plant pathogen Ecc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increasing concern about global climate warming has accelerated research into renewable energy sources that could replace fossil petroleum-based fuels and materials. Bioethanol production from cellulosic biomass by fermentation with baker s yeast Saccharomyces cerevisiae is one of the most studied areas in this field. The focus has been on metabolic engineering of S. cerevisiae for utilisation of the pentose sugars, in particular D-xylose that is abundant in the hemicellulose fraction of biomass. Introduction of a heterologous xylose-utilisation pathway into S. cerevisiae enables xylose fermentation, but ethanol yield and productivity do not reach the theoretical level. In the present study, transcription, proteome and metabolic flux analyses of recombinant xylose-utilising S. cerevisiae expressing the genes encoding xylose reductase (XR) and xylitol dehydrogenase (XDH) from Pichia stipitis and the endogenous xylulokinase were carried out to characterise the global cellular responses to metabolism of xylose. The aim of these studies was to find novel ways to engineer cells for improved xylose fermentation. The analyses were carried out from cells grown on xylose and glucose both in batch and chemostat cultures. A particularly interesting observation was that several proteins had post-translationally modified forms with different abundance in cells grown on xylose and glucose. Hexokinase 2, glucokinase and both enolase isoenzymes 1 and 2 were phosphorylated differently on the two different carbon sources studied. This suggests that phosphorylation of glycolytic enzymes may be a yet poorly understood means to modulate their activity or function. The results also showed that metabolism of xylose affected the gene expression and abundance of proteins in pathways leading to acetyl-CoA synthesis and altered the metabolic fluxes in these pathways. Additionally, the analyses showed increased expression and abundance of several other genes and proteins involved in cellular redox reactions (e.g. aldo-ketoreductase Gcy1p and 6-phosphogluconate dehydrogenase) in cells grown on xylose. Metabolic flux analysis indicated increased NADPH-generating flux through the oxidative part of the pentose phosphate pathway in cells grown on xylose. The most importantly, results indicated that xylose was not able to repress to the same extent as glucose the genes of the tricarboxylic acid and glyoxylate cycles, gluconeogenesis and some other genes involved in the metabolism of respiratory carbon sources. This suggests that xylose is not recognised as a fully fermentative carbon source by the recombinant S. cerevisiae that may be one of the major reasons for the suboptimal fermentation of xylose. The regulatory network for carbon source recognition and catabolite repression is complex and its functions are only partly known. Consequently, multiple genetic modifications and also random approaches would probably be required if these pathways were to be modified for further improvement of xylose fermentation by recombinant S. cerevisiae strains.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Drosophila compound eye has provided a genetic approach to understanding the specification of cell fates during differentiation. The eye is made up of some 750 repeated units or ommatidia, arranged in a lattice. The cellular composition of each ommatidium is identical. The arrangement of the lattice and the specification of cell fates in each ommatidium are thought to occur in development through cellular interactions with the local environment. Many mutations have been studied that disrupt the proper patterning and cell fating in the eye. The eyes absent (eya) mutation, the subject of this thesis, was chosen because of its eyeless phenotype. In eya mutants, eye progenitor cells undergo programmed cell death before the onset of patterning has occurred. The molecular genetic analysis of the gene is presented.

The eye arises from the larval eye-antennal imaginal disc. During the third larval instar, a wave of differentiation progresses across the disc, marked by a furrow. Anterior to the furrow, proliferating cells are found in apparent disarray. Posterior to the furrow, clusters of differentiating cells can be discerned, that correspond to the ommatidia of the adult eye. Analysis of an allelic series of eya mutants in comparison to wild type revealed the presence of a selection point: a wave of programmed cell death that normally precedes the furrow. In eya mutants, an excessive number of eye progenitor cells die at this selection point, suggesting the eya gene influences the distribution of cells between fates of death and differentiation.

In addition to its role in the eye, the eya gene has an embryonic function. The eye function is autonomous to the eye progenitor cells. Molecular maps of the eye and embryonic phenotypes are different. Therefore, the function of eya in the eye can be treated independently of the embryonic function. Cloning of the gene reveals two cDNA's that are identical except for the use of an alternatively-spliced 5' exon. The predicted protein products differ only at the N-termini. Sequence analysis shows these two proteins to be the first of their kind to be isolated. Trangenic studies using the two cDNA's show that either gene product is able to rescue the eye phenotype of eya mutants.

The eya gene exhibits interallelic complementation. This interaction is an example of an "allelic position effect": an interaction that depends on the relative position in the genome of the two alleles, which is thought to be mediated by chromosomal pairing. The interaction at eya is essentially identical to a phenomenon known as transvection, which is an allelic position effect that is sensitive to certain kinds of chromosomal rearrangements. A current model for the mechanism of transvection is the trans action of gene regulatory regions. The eya locus is particularly well suited for the study of transvection because the mutant phenotypes can be quantified by scoring the size of the eye.

The molecular genetic analysis of eya provides a system for uncovering mechanisms underlying differentiation, developmentally regulated programmed cell death, and gene regulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ability to interface with and program cellular function remains a challenging research frontier in biotechnology. Although the emerging field of synthetic biology has recently generated a variety of gene-regulatory strategies based on synthetic RNA molecules, few strategies exist through which to control such regulatory effects in response to specific exogenous or endogenous molecular signals. Here, we present the development of an engineered RNA-based device platform to detect and act on endogenous protein signals, linking these signals to the regulation of genes and thus cellular function.

We describe efforts to develop an RNA-based device framework for regulating endogenous genes in human cells. Previously developed RNA control devices have demonstrated programmable ligand-responsive genetic regulation in diverse cell types, and we attempted to adapt this class of cis-acting control elements to function in trans. We divided the device into two strands that reconstitute activity upon hybridization. Device function was optimized using an in vivo model system, and we found that device sequence is not as flexible as previously reported. After verifying the in vitro activity of our optimized design, we attempted to establish gene regulation in a human cell line using additional elements to direct device stability, structure, and localization. The significant limitations of our platform prevented endogenous gene regulation.

We next describe the development of a protein-responsive RNA-based regulatory platform. Employing various design strategies, we demonstrated functional devices that both up- and downregulate gene expression in response to a heterologous protein in a human cell line. The activity of our platform exceeded that of a similar, small-molecule-responsive platform. We demonstrated the ability of our devices to respond to both cytoplasmic- and nuclear-localized protein, providing insight into the mechanism of action and distinguishing our platform from previously described devices with more restrictive ligand localization requirements. Finally, we demonstrated the versatility of our device platform by developing a regulatory device that responds to an endogenous signaling protein.

The foundational tool we present here possesses unique advantages over previously described RNA-based gene-regulatory platforms. This genetically encoded technology may find future applications in the development of more effective diagnostic tools and targeted molecular therapy strategies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The full virulence of Xanthomonas campestris pv. campestris (Xcc) to plants depends upon cell-to-cell signalling mediated by the signal molecule DSF (for diffusible signal factor), that has been characterised as cis-11-methyl-2-dodecenoic acid. DSF-mediated signalling regulates motility, biofilm dynamics and the synthesis of particular virulence determinants. The synthesis and perception of the DSF signal molecule involves products of the rpf (regulation of pathogenicity factors) gene cluster. DSF synthesis is fully dependent on RpfF, which encodes a putative enoyl-CoA hydratase. A two-component system, comprising the complex sensor histidine kinase RpfC and the HD-GYP domain regulator RpfG, is implicated in DSF perception. The HD-GYP domain of RpfG is a phosphodiesterase working on cyclic di-GMP; DSF perception is thereby linked to the turnover of this intracellular second messenger. The full range of regulatory influences of the Rpf/DSF system and of cyclic di-GMP in Xcc has yet to be established. In order to further characterise the Rpf/DSF regulatory network in Xcc, a proteomic approach was used to compare protein expression in the wildtype and defined rpf mutants. This work shows that the Rpf/DSF system regulates a range of biological functions that are associated with virulence and biofilm formation but also reveals new functions mediated by DSF regulation. These functions include antibiotic resistance, detoxification and stress tolerance. Mutational analysis showed that several of these regulated protein functions contribute to virulence in Chinese radish. Interestingly, it was demonstrated that different patterns of protein expression are associated with mutations of rpfF, rpfC and rpfG. This suggests that RpfG and RpfC have broader roles in regulation other than perception and transduction of DSF. Taken together, this analysis indicates the broad and complex regulatory role of Rpf/DSF system and identifies a number of new functions under Rpf/DSF control, which were shown to play a role in virulence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fundamental difference between classic and modern biology is that technological innovations allow to generate high-throughput data to get insights into molecular interactions on a genomic scale. These high-throughput data can be used to infer gene networks, e. g., the transcriptional regulatory or signaling network, representing a blue print of the current dynamical state of the cellular system. However, gene networks do not provide direct answers to biological questions, instead, they need to be analyzed to reveal functional information of molecular working mechanisms. In this paper we propose a new approach to analyze the transcriptional regulatory network of yeast to predict cell cycle regulated genes. The novelty of our approach is that, in contrast to all other approaches aiming to predict cell cycle regulated genes, we do not use time series data but base our analysis on the prior information of causal interactions among genes. The major purpose of the present paper is to predict cell cycle regulated genes in S. cerevisiae. Our analysis is based on the transcriptional regulatory network, representing causal interactions between genes, and a list of known periodic genes. No further data are used. Our approach utilizes the causal membership of genes and the hierarchical organization of the transcriptional regulatory network leading to two groups of periodic genes with a well defined direction of information flow. We predict genes as periodic if they appear on unique shortest paths connecting two periodic genes from different hierarchy levels. Our results demonstrate that a classical problem as the prediction of cell cycle regulated genes can be seen in a new light if the concept of a causal membership of a gene is applied consequently. This also shows that there is a wealth of information buried in the transcriptional regulatory network whose unraveling may require more elaborate concepts than it might seem at first.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We develop an approach utilizing randomized genotypes to rigorously infer causal regulatory relationships among genes at the transcriptional level, based on experiments in which genotyping and expression profiling are performed. This approach can be used to build transcriptional regulatory networks and to identify putative regulators of genes. We apply the method to an experiment in yeast, in which genes known to be in the same processes and functions are recovered in the resulting transcriptional regulatory network.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND:

We have recently identified a number of Quantitative Trait Loci (QTL) contributing to the 2-fold muscle weight difference between the LG/J and SM/J mouse strains and refined their confidence intervals. To facilitate nomination of the candidate genes responsible for these differences we examined the transcriptome of the tibialis anterior (TA) muscle of each strain by RNA-Seq.

RESULTS:

13,726 genes were expressed in mouse skeletal muscle. Intersection of a set of 1061 differentially expressed transcripts with a mouse muscle Bayesian Network identified a coherent set of differentially expressed genes that we term the LG/J and SM/J Regulatory Network (LSRN). The integration of the QTL, transcriptome and the network analyses identified eight key drivers of the LSRN (Kdr, Plbd1, Mgp, Fah, Prss23, 2310014F06Rik, Grtp1, Stk10) residing within five QTL regions, which were either polymorphic or differentially expressed between the two strains and are strong candidates for quantitative trait genes (QTGs) underlying muscle mass. The insight gained from network analysis including the ability to make testable predictions is illustrated by annotating the LSRN with knowledge-based signatures and showing that the SM/J state of the network corresponds to a more oxidative state. We validated this prediction by NADH tetrazolium reductase staining in the TA muscle revealing higher oxidative potential of the SM/J compared to the LG/J strain (p<0.03).

CONCLUSION:

Thus, integration of fine resolution QTL mapping, RNA-Seq transcriptome information and mouse muscle Bayesian Network analysis provides a novel and unbiased strategy for nomination of muscle QTGs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Raised blood pressure (BP) is a major risk factor for cardiovascular disease. Previous studies have identified 47 distinct genetic variants robustly associated with BP, but collectively these explain only a few percent of the heritability for BP phenotypes. To find additional BP loci, we used a bespoke gene-centric array to genotype an independent discovery sample of 25,118 individuals that combined hypertensive case-control and general population samples. We followed up four SNPs associated with BP at our p < 8.56 × 10(-7) study-specific significance threshold and six suggestively associated SNPs in a further 59,349 individuals. We identified and replicated a SNP at LSP1/TNNT3, a SNP at MTHFR-NPPB independent (r(2) = 0.33) of previous reports, and replicated SNPs at AGT and ATP2B1 reported previously. An analysis of combined discovery and follow-up data identified SNPs significantly associated with BP at p < 8.56 × 10(-7) at four further loci (NPR3, HFE, NOS3, and SOX6). The high number of discoveries made with modest genotyping effort can be attributed to using a large-scale yet targeted genotyping array and to the development of a weighting scheme that maximized power when meta-analyzing results from samples ascertained with extreme phenotypes, in combination with results from nonascertained or population samples. Chromatin immunoprecipitation and transcript expression data highlight potential gene regulatory mechanisms at the MTHFR and NOS3 loci. These results provide candidates for further study to help dissect mechanisms affecting BP and highlight the utility of studying SNPs and samples that are independent of those studied previously even when the sample size is smaller than that in previous studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Les cellules souches somatiques présentent habituellement un comportement très différent des cellules souches pluripotentes. Les bases moléculaires de l’auto-renouvellement des cellules souches embryonnaires ont été récemment déchiffrées grâce à la facilité avec laquelle nous pouvons maintenant les purifier et les maintenir en culture durant de longues périodes de temps. Par contre, il en va tout autrement pour les cellules souches hématopoïétiques. Dans le but d’en apprendre davantage sur le fonctionnement moléculaire de l’auto-renouvellement des cellules souches hématopoïétiques, j’ai d’abord conçu une nouvelle méthode de criblage gain-de-fonction qui répond aux caprices particuliers de ces cellules. Partant d’une liste de plus de 700 facteurs nucléaires et facteurs de division asymétrique candidats, j’ai identifié 24 nouveaux facteurs qui augmentent l’activité des cellules souches hématopoïétiques lorsqu’ils sont surexprimés. J’ai par la suite démontré que neuf de ces facteurs agissent de manière extrinsèque aux cellules souches hématopoïétiques, c’est-à-dire que l’effet provient des cellules nourricières modifiées en co-culture. J’ai également mis à jour un nouveau réseau de régulation de transcription qui implique cinq des facteurs identifiés, c’est-à-dire PRDM16, SPI1, KLF10, FOS et TFEC. Ce réseau ressemble étrangement à celui soutenant l’ostéoclastogénèse. Ces résultats soulèvent l’hypothèse selon laquelle les ostéoclastes pourraient aussi faire partie de la niche fonctionnelle des cellules souches hématopoïétiques dans la moelle osseuse. De plus, j’ai identifié un second réseau de régulation impliquant SOX4, SMARCC1 et plusieurs facteurs identifiés précédemment dans le laboratoire, c’est-à-dire BMI1, MSI2 et KDM5B. D’autre part, plusieurs indices accumulés tendent à démontrer qu’il existe des différences fondamentales entre le fonctionnement des cellules souches hématopoïétiques murines et humaines.