985 resultados para gene networks
Resumo:
An analysis of the dietary content of haematophagous insects can provide important information about the transmission networks of certain zoonoses. The present study evaluated the potential of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the mitochondrial cytochrome B (cytb) gene to differentiate between vertebrate species that were identified as possible sources of sandfly meals. The complete cytb gene sequences of 11 vertebrate species available in the National Center for Biotechnology Information database were digested with Aci I, Alu I, Hae III and Rsa I restriction enzymes in silico using Restriction Mapper software. The cytb gene fragment (358 bp) was amplified from tissue samples of vertebrate species and the dietary contents of sandflies and digested with restriction enzymes. Vertebrate species presented a restriction fragment profile that differed from that of other species, with the exception of Canis familiaris and Cerdocyon thous. The 358 bp fragment was identified in 76 sandflies. Of these, 10 were evaluated using the restriction enzymes and the food sources were predicted for four: Homo sapiens (1), Bos taurus (1) and Equus caballus (2). Thus, the PCR-RFLP technique could be a potential method for identifying the food sources of arthropods. However, some points must be clarified regarding the applicability of the method, such as the extent of DNA degradation through intestinal digestion, the potential for multiple sources of blood meals and the need for greater knowledge regarding intraspecific variations in mtDNA.
Resumo:
Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in Boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a Boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred Boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity and solution space, thus making it easier to investigate.
Resumo:
A large proportion of the death toll associated with malaria is a consequence of malaria infection during pregnancy, causing up to 200,000 infant deaths annually. We previously published the first extensive genetic association study of placental malaria infection, and here we extend this analysis considerably, investigating genetic variation in over 9,000 SNPs in more than 1,000 genes involved in immunity and inflammation for their involvement in susceptibility to placental malaria infection. We applied a new approach incorporating results from both single gene analysis as well as gene-gene interactionson a protein-protein interaction network. We found suggestive associations of variants in the gene KLRK1 in the single geneanalysis, as well as evidence for associations of multiple members of the IL-7/IL-7R signalling cascade in the combined analysis. To our knowledge, this is the first large-scale genetic study on placental malaria infection to date, opening the door for follow-up studies trying to elucidate the genetic basis of this neglected form of malaria.
Resumo:
Nuclear receptors are a major component of signal transduction in animals. They mediate the regulatory activities of many hormones, nutrients and metabolites on the homeostasis and physiology of cells and tissues. It is of high interest to model the corresponding regulatory networks. While molecular and cell biology studies of individual promoters have provided important mechanistic insight, a more complex picture is emerging from genome-wide studies. The regulatory circuitry of nuclear receptor regulated gene expression networks, and their response to cellular signaling, appear highly dynamic, and involve long as well as short range chromatin interactions. We review how progress in understanding the kinetics and regulation of cofactor recruitment, and the development of new genomic methods, provide opportunities but also a major challenge for modeling nuclear receptor mediated regulatory networks.
Resumo:
BACKGROUND: Several studies have established Glioblastoma Multiforme (GBM) prognostic and predictive models based on age and Karnofsky Performance Status (KPS), while very few studies evaluated the prognostic and predictive significance of preoperative MR-imaging. However, to date, there is no simple preoperative GBM classification that also correlates with a highly prognostic genomic signature. Thus, we present for the first time a biologically relevant, and clinically applicable tumor Volume, patient Age, and KPS (VAK) GBM classification that can easily and non-invasively be determined upon patient admission. METHODS: We quantitatively analyzed the volumes of 78 GBM patient MRIs present in The Cancer Imaging Archive (TCIA) corresponding to patients in The Cancer Genome Atlas (TCGA) with VAK annotation. The variables were then combined using a simple 3-point scoring system to form the VAK classification. A validation set (N = 64) from both the TCGA and Rembrandt databases was used to confirm the classification. Transcription factor and genomic correlations were performed using the gene pattern suite and Ingenuity Pathway Analysis. RESULTS: VAK-A and VAK-B classes showed significant median survival differences in discovery (P = 0.007) and validation sets (P = 0.008). VAK-A is significantly associated with P53 activation, while VAK-B shows significant P53 inhibition. Furthermore, a molecular gene signature comprised of a total of 25 genes and microRNAs was significantly associated with the classes and predicted survival in an independent validation set (P = 0.001). A favorable MGMT promoter methylation status resulted in a 10.5 months additional survival benefit for VAK-A compared to VAK-B patients. CONCLUSIONS: The non-invasively determined VAK classification with its implication of VAK-specific molecular regulatory networks, can serve as a very robust initial prognostic tool, clinical trial selection criteria, and important step toward the refinement of genomics-based personalized therapy for GBM patients.
Resumo:
The aim of this work was to design a novel strategy to detect new targets for anticancer treatments. The rationale was to build Biological Association Networks from differentially expressed genes in drug-resistant cells to identify important nodes within the Networks. These nodes may represent putative targets to attack in cancer therapy, as a way to destabilize the gene network developed by the resistant cells to escape from the drug pressure. As a model we used cells resistant to methotrexate (MTX), an inhibitor of DHFR. Selected node-genes were analyzed at the transcriptional level and from a genotypic point of view. In colon cancer cells, DHFR, the AKR1 family, PKC¿, S100A4, DKK1, and CAV1 were overexpressed while E-cadherin was lost. In breast cancer cells, the UGT1A family was overexpressed, whereas EEF1A1 was overexpressed in pancreatic cells. Interference RNAs directed against these targets sensitized cells towards MTX.
Resumo:
AbstractBACKGROUND: Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult.PRINCIPAL FINDINGS: We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell.CONCLUSIONS: For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases.AVAILABILITY: The gene-disease networks used in this study and part of the analysis are available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download
Resumo:
Biology is turning into an information science. The science of systems biology seeks to understand the genetic networks that govern organism development and functions. In this study the chicken was used as a model organism in the study of B cell regulatory factors. These studies open new avenues for plasma cell research by connecting the down regulation of the B cell gene expression program directly to the initiation of plasma cell differentiation. The unique advantages of the DT40 avian B cell model system, specifically its high homologous recombination rate, were utilized to study gene regulation in Pax5 knock out cell lines and to gain new insights into the B cell to plasma cell transitions that underlie the secretion of antibodies as part of the adaptive immune response. The Pax5 transcription factor is central to the commitment, development and maintenance of the B cell phenotype. Mice lacking the Pax5 gene have an arrest in development at the pro-B lymphocyte stage while DT40 cells have been derived from cells at a more mature stage of development. The DT40 Pax5-/- cells exhibited gene expression similarities with primary chicken plasma cells. The expression of the plasma cell transcription factors Blimp-1 and XBP-1 were significantly upregulated while the expression of the germinal centre factor BCL6 was diminished in Pax5-/- cells, and this alteration was normalized by Pax5 re-introduction. The Pax5-deficient cells further manifested substantially elevated secretion of IgM into the supernatant, another characteristic of plasma cells. These results for the first time indicated that the downregulation of the Pax5 gene in B cells promotes plasma cell differentiation. Cross-species meta-analysis of chicken and mouse Pax5 gene knockout studies uncovers genes and pathways whose regulatory relationship to Pax5 has remained unchanged for over 300 million years. Restriction of the hematopoietic stem cell fate to produce T, B and NK cell lineages is dependent on the Ikaros and its molecular partners, the closely related Helios and Aiolos. Ikaros family members are zinc finger proteins which act as transcriptional repressors while helping to activate lymphoid genes. Helios in mice is expressed from the hematopoietic stem cell level onwards, although later in development its expression seems to predominate in the T cell lineage. This study establishes the emergence and sequence of the chicken Ikaros family members. Helios expression in the bursa of Fabricius, germinal centres and B cell lines suggested a role for Helios in the avian B-cell lineage, too. Phylogenetic studies of the Ikaros family connect the expansion of the Ikaros family, and thus possibly the emergence of the adaptive immune system, with the second round of genome duplications originally proposed by Ohno. Paralogs that have arisen as a result of genome-wide duplications are sometimes termed ohnologs – Ikaros family proteins appear to fit that definition. This study highlighted the opportunities afforded by the genome sequencing efforts and somatic cell reverse genetics approaches using the DT40 cell line. The DT40 cell line and the avian model system promise to remain a fruitful model for mechanistic insight in the post-genomic era as well.
Resumo:
The amount of biological data has grown exponentially in recent decades. Modern biotechnologies, such as microarrays and next-generation sequencing, are capable to produce massive amounts of biomedical data in a single experiment. As the amount of the data is rapidly growing there is an urgent need for reliable computational methods for analyzing and visualizing it. This thesis addresses this need by studying how to efficiently and reliably analyze and visualize high-dimensional data, especially that obtained from gene expression microarray experiments. First, we will study the ways to improve the quality of microarray data by replacing (imputing) the missing data entries with the estimated values for these entries. Missing value imputation is a method which is commonly used to make the original incomplete data complete, thus making it easier to be analyzed with statistical and computational methods. Our novel approach was to use curated external biological information as a guide for the missing value imputation. Secondly, we studied the effect of missing value imputation on the downstream data analysis methods like clustering. We compared multiple recent imputation algorithms against 8 publicly available microarray data sets. It was observed that the missing value imputation indeed is a rational way to improve the quality of biological data. The research revealed differences between the clustering results obtained with different imputation methods. On most data sets, the simple and fast k-NN imputation was good enough, but there were also needs for more advanced imputation methods, such as Bayesian Principal Component Algorithm (BPCA). Finally, we studied the visualization of biological network data. Biological interaction networks are examples of the outcome of multiple biological experiments such as using the gene microarray techniques. Such networks are typically very large and highly connected, thus there is a need for fast algorithms for producing visually pleasant layouts. A computationally efficient way to produce layouts of large biological interaction networks was developed. The algorithm uses multilevel optimization within the regular force directed graph layout algorithm.
Resumo:
The human immune system is constantly interacting with the surrounding stimuli and microorganisms. However, when directed against self or harmless antigens, these vital defense mechanisms can cause great damage. In addition, the understanding the underlying mechanism of several human diseases caused by aberrant immune cell functions, for instance type 1 diabetes and allergies, remains far from being complete. In this Ph.D. study these questions were addressed using genome-wide transcriptomic analyses. Asthma and allergies are characterized by a hyperactive response of the T helper 2 (Th2) immune cells. In this study, the target genes of the STAT6 transcription factor in naïve human T cells were identified with RNAi for the first time. STAT6 was shown to act as a central activator of the genes expression upon IL-4 signaling, with both direct and indirect effects on Th2 cell transcriptome. The core transcription factor network induced by IL-4 was identified from a kinetic analysis of the transcriptome. Type 1 diabetes is an autoimmune disease influenced by both the genetic susceptibility of an individual and the disease-triggering environmental factors. To improve understanding of the autoimmune processes driving pathogenesis in the prediabetic phase in humans, a unique series of prospective whole-blood RNA samples collected from HLA-susceptible children in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study was studied. Changes in different timewindows of the pathogenesis process were identified, and especially the type 1 interferon response was activated early and throughout the preclinical T1D. The hygiene hypothesis states that allergic diseases, and lately also autoimmune diseases, could be prevented by infections and other microbial contacts acquired in early childhood, or even prenatally. To study the effects of the standard of hygiene on the development of neonatal immune system, cord blood samples from children born in Finland (high standard of living), Estonia (rapid economic growth) and Russian Karelia (low standard of living) were compared. Children born in Russian Karelia deviated from Finnish and Estonian children in many aspects of the neonatal immune system, which was developmentally more mature in Karelia, resembling that of older infants. The results of this thesis offer significant new information on the regulatory networks associated with immune-mediated diseases in human. The results will facilitate understanding and further research on the role of the identified target genes and mechanisms driving the allergic inflammation and type 1 diabetes, hopefully leading to a new era of drug development.
Resumo:
The present study screened potential genes related to lung adenocarcinoma, with the aim of further understanding disease pathogenesis. The GSE2514 dataset including 20 lung adenocarcinoma and 19 adjacent normal tissue samples from 10 patients with lung adenocarcinoma aged 45-73 years was downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) between the two groups were screened using the t-test. Potential gene functions were predicted using functional and pathway enrichment analysis, and protein-protein interaction (PPI) networks obtained from the STRING database were constructed with Cytoscape. Module analysis of PPI networks was performed through MCODE in Cytoscape. In total, 535 upregulated and 465 downregulated DEGs were identified. These included ATP5D, UQCRC2, UQCR11 and genes encoding nicotinamide adenine dinucleotide (NADH), which are mainly associated with mitochondrial ATP synthesis coupled electron transport, and which were enriched in the oxidative phosphorylation pathway. Other DEGs were associated with DNA replication (PRIM1, MCM3, and RNASEH2A), cell surface receptor-linked signal transduction and the enzyme-linked receptor protein signaling pathway (MAPK1, STAT3, RAF1, and JAK1), and regulation of the cytoskeleton and phosphatidylinositol signaling system (PIP5K1B, PIP5K1C, and PIP4K2B). Our findings suggest that DEGs encoding subunits of NADH, PRIM1, MCM3, MAPK1, STAT3, RAF1, and JAK1 might be associated with the development of lung adenocarcinoma.
Resumo:
Understanding the relationship between genetic diseases and the genes associated with them is an important problem regarding human health. The vast amount of data created from a large number of high-throughput experiments performed in the last few years has resulted in an unprecedented growth in computational methods to tackle the disease gene association problem. Nowadays, it is clear that a genetic disease is not a consequence of a defect in a single gene. Instead, the disease phenotype is a reflection of various genetic components interacting in a complex network. In fact, genetic diseases, like any other phenotype, occur as a result of various genes working in sync with each other in a single or several biological module(s). Using a genetic algorithm, our method tries to evolve communities containing the set of potential disease genes likely to be involved in a given genetic disease. Having a set of known disease genes, we first obtain a protein-protein interaction (PPI) network containing all the known disease genes. All the other genes inside the procured PPI network are then considered as candidate disease genes as they lie in the vicinity of the known disease genes in the network. Our method attempts to find communities of potential disease genes strongly working with one another and with the set of known disease genes. As a proof of concept, we tested our approach on 16 breast cancer genes and 15 Parkinson's Disease genes. We obtained comparable or better results than CIPHER, ENDEAVOUR and GPEC, three of the most reliable and frequently used disease-gene ranking frameworks.
Resumo:
As a result of mutation in genes, which is a simple change in our DNA, we will have undesirable phenotypes which are known as genetic diseases or disorders. These small changes, which happen frequently, can have extreme results. Understanding and identifying these changes and associating these mutated genes with genetic diseases can play an important role in our health, by making us able to find better diagnosis and therapeutic strategies for these genetic diseases. As a result of years of experiments, there is a vast amount of data regarding human genome and different genetic diseases that they still need to be processed properly to extract useful information. This work is an effort to analyze some useful datasets and to apply different techniques to associate genes with genetic diseases. Two genetic diseases were studied here: Parkinson’s disease and breast cancer. Using genetic programming, we analyzed the complex network around known disease genes of the aforementioned diseases, and based on that we generated a ranking for genes, based on their relevance to these diseases. In order to generate these rankings, centrality measures of all nodes in the complex network surrounding the known disease genes of the given genetic disease were calculated. Using genetic programming, all the nodes were assigned scores based on the similarity of their centrality measures to those of the known disease genes. Obtained results showed that this method is successful at finding these patterns in centrality measures and the highly ranked genes are worthy as good candidate disease genes for being studied. Using standard benchmark tests, we tested our approach against ENDEAVOUR and CIPHER - two well known disease gene ranking frameworks - and we obtained comparable results.
Resumo:
La compréhension de processus biologiques complexes requiert des approches expérimentales et informatiques sophistiquées. Les récents progrès dans le domaine des stratégies génomiques fonctionnelles mettent dorénavant à notre disposition de puissants outils de collecte de données sur l’interconnectivité des gènes, des protéines et des petites molécules, dans le but d’étudier les principes organisationnels de leurs réseaux cellulaires. L’intégration de ces connaissances au sein d’un cadre de référence en biologie systémique permettrait la prédiction de nouvelles fonctions de gènes qui demeurent non caractérisées à ce jour. Afin de réaliser de telles prédictions à l’échelle génomique chez la levure Saccharomyces cerevisiae, nous avons développé une stratégie innovatrice qui combine le criblage interactomique à haut débit des interactions protéines-protéines, la prédiction de la fonction des gènes in silico ainsi que la validation de ces prédictions avec la lipidomique à haut débit. D’abord, nous avons exécuté un dépistage à grande échelle des interactions protéines-protéines à l’aide de la complémentation de fragments protéiques. Cette méthode a permis de déceler des interactions in vivo entre les protéines exprimées par leurs promoteurs naturels. De plus, aucun biais lié aux interactions des membranes n’a pu être mis en évidence avec cette méthode, comparativement aux autres techniques existantes qui décèlent les interactions protéines-protéines. Conséquemment, nous avons découvert plusieurs nouvelles interactions et nous avons augmenté la couverture d’un interactome d’homéostasie lipidique dont la compréhension demeure encore incomplète à ce jour. Par la suite, nous avons appliqué un algorithme d’apprentissage afin d’identifier huit gènes non caractérisés ayant un rôle potentiel dans le métabolisme des lipides. Finalement, nous avons étudié si ces gènes et un groupe de régulateurs transcriptionnels distincts, non préalablement impliqués avec les lipides, avaient un rôle dans l’homéostasie des lipides. Dans ce but, nous avons analysé les lipidomes des délétions mutantes de gènes sélectionnés. Afin d’examiner une grande quantité de souches, nous avons développé une plateforme à haut débit pour le criblage lipidomique à contenu élevé des bibliothèques de levures mutantes. Cette plateforme consiste en la spectrométrie de masse à haute resolution Orbitrap et en un cadre de traitement des données dédié et supportant le phénotypage des lipides de centaines de mutations de Saccharomyces cerevisiae. Les méthodes expérimentales en lipidomiques ont confirmé les prédictions fonctionnelles en démontrant certaines différences au sein des phénotypes métaboliques lipidiques des délétions mutantes ayant une absence des gènes YBR141C et YJR015W, connus pour leur implication dans le métabolisme des lipides. Une altération du phénotype lipidique a également été observé pour une délétion mutante du facteur de transcription KAR4 qui n’avait pas été auparavant lié au métabolisme lipidique. Tous ces résultats démontrent qu’un processus qui intègre l’acquisition de nouvelles interactions moléculaires, la prédiction informatique des fonctions des gènes et une plateforme lipidomique innovatrice à haut débit , constitue un ajout important aux méthodologies existantes en biologie systémique. Les développements en méthodologies génomiques fonctionnelles et en technologies lipidomiques fournissent donc de nouveaux moyens pour étudier les réseaux biologiques des eucaryotes supérieurs, incluant les mammifères. Par conséquent, le stratégie présenté ici détient un potentiel d’application au sein d’organismes plus complexes.
Resumo:
Gene expression is a quantitative trait that can be mapped genetically in structured populations to identify expression quantitative trait loci (eQTL). Genes and regulatory networks underlying complex traits can subsequently be inferred. Using a recently released genome sequence, we have defined cis- and trans-eQTL and their environmental response to low phosphorus (P) availability within a complex plant genome and found hotspots of trans-eQTL within the genome. Interval mapping, using P supply as a covariate, revealed 18,876 eQTL. trans-eQTL hotspots occurred on chromosomes A06 and A01 within Brassica rapa; these were enriched with P metabolism-related Gene Ontology terms (A06) as well as chloroplast-and photosynthesis-related terms (A01). We have also attributed heritability components to measures of gene expression across environments, allowing the identification of novel gene expression markers and gene expression changes associated with low P availability. Informative gene expression markers were used to map eQTL and P use efficiency-related QTL. Genes responsive to P supply had large environmental and heritable variance components. Regulatory loci and genes associated with P use efficiency identified through eQTL analysis are potential targets for further characterization and may have potential for crop improvement.