887 resultados para gene expression profiling
Resumo:
Cancer stem cell (CSC) based gene expression signatures are associated with prognosis in various tumour types and CSCs are suggested to be particularly drug resistant. The aim of our study was first, to determine the prognostic significance of CSC-related gene expression in residual tumour cells of neoadjuvant-treated gastric cancer (GC) patients. Second, we wished to examine, whether expression alterations between pre- and post-therapeutic tumour samples exist, consistent with an enrichment of drug resistant tumour cells. The expression of 44 genes was analysed in 63 formalin-fixed, paraffin embedded tumour specimens with partial tumour regression (10-50% residual tumour) after neoadjuvant chemotherapy by quantitative real time PCR low-density arrays. A signature of combined GSK3B(high), β-catenin (CTNNB1)(high) and NOTCH2(low) expression was strongly correlated with better patient survival (p<0.001). A prognostic relevance of these genes was also found analysing publically available gene expression data. The expression of 9 genes was compared between pre-therapeutic biopsies and post-therapeutic resected specimens. A significant post-therapeutic increase in NOTCH2, LGR5 and POU5F1 expression was found in tumours with different tumour regression grades. No significant alterations were observed for GSK3B and CTNNB1. Immunohistochemical analysis demonstrated a chemotherapy-associated increase in the intensity of NOTCH2 staining, but not in the percentage of NOTCH2. Taken together, the GSK3B, CTNNB1 and NOTCH2 expression signature is a novel, promising prognostic parameter for GC. The results of the differential expression analysis indicate a prominent role for NOTCH2 and chemotherapy resistance in GC, which seems to be related to an effect of the drugs on NOTCH2 expression rather than to an enrichment of NOTCH2 expressing tumour cells.
Resumo:
Neurotrophic factors such as nerve growth factor (NGF) promote a wide variety of responses in neurons, including differentiation, survival, plasticity, and repair. Such actions often require changes in gene expression. To identify the regulated genes and thereby to more fully understand the NGF mechanism, we carried out serial analysis of gene expression (SAGE) profiling of transcripts derived from rat PC12 cells before and after NGF-promoted neuronal differentiation. Multiple criteria supported the reliability of the profile. Approximately 157,000 SAGE tags were analyzed, representing at least 21,000 unique transcripts. Of these, nearly 800 were regulated by 6-fold or more in response to NGF. Approximately 150 of the regulated transcripts have been matched to named genes, the majority of which were not previously known to be NGF-responsive. Functional categorization of the regulated genes provides insight into the complex, integrated mechanism by which NGF promotes its multiple actions. It is anticipated that as genomic sequence information accrues the data derived here will continue to provide information about neurotrophic factor mechanisms.
Resumo:
BodyMap is a human and mouse gene expression database that is based on site-directed 3′-expressed sequence tags generated at Osaka University. To date, it contains more than 300 000 tag sequences from 64 human and 39 mouse tissues. For the recent release, the precise anatomical expression patterns for more than half of the human gene entries were generated by introduced amplified fragment length polymorphism (iAFLP), which is a PCR-based high-throughput expression profiling method. The iAFLP data incorporated into BodyMap describe the relative contents of more than 12 000 transcripts across 30 tissue RNAs. In addition, a newly developed gene ranking system helps users obtain lists of genes that have desired expression patterns according to their significance. BodyMap supports complete transfer of unique data sets and provides analysis that is accessible through the WWW at http://bodymap.ims.u-tokyo.ac.jp.
Resumo:
Chronic alcohol exposure induces lasting behavioral changes, tolerance, and dependence. This results, at least partially, from neural adaptations at a cellular level. Previous genome-wide gene expression studies using pooled human brain samples showed that alcohol abuse causes widespread changes in the pattern of gene expression in the frontal and motor cortices of human brain. Because these studies used pooled samples, they could not determine variability between different individuals. In the present study, we profiled gene expression levels of 14 postmortem human brains (seven controls and seven alcoholic cases) using cDNA microarrays (46 448 clones per array). Both frontal cortex and motor cortex brain regions were studied. The list of genes differentially expressed confirms and extends previous studies of alcohol responsive genes. Genes identified as differentially expressed in two brain regions fell generally into similar functional groups, including metabolism, immune response, cell survival, cell communication, signal transduction and energy production. Importantly, hierarchical clustering of differentially expressed genes accurately distinguished between control and alcoholic cases, particularly in the frontal cortex.
Resumo:
Gene expression profiling using microarrays and xenograft transplants of human cancer cell lines are both popular tools to investigate human cancer. However, the undefined degree of cross hybridization between the mouse and human genomes hinders the use of microarrays to characterize gene expression of both the host and the cancer cell within the xenograft. Since an increasingly recognized aspect of cancer is the host response (or cancer-stroma interaction), we describe here a bioinformatic manipulation of the Affymetrix profiling that allows interrogation of the gene expression of both the mouse host and the human tumour. Evidence of microenvironmental regulation of epithelial mesenchymal transition of the tumour component in vivo is resolved against a background of mesenchymal gene expression. This tool could allow deeper insight to the mechanism of action of anti-cancer drugs, as typically novel drug efficacy is being tested in xenograft systems.
Resumo:
Thraustochytrids have become of considerable industrial and scientific interest in the past decade due to their health benefits. They have been proven to be the principle source in marine and estuarine fish diets with high percentage of long chain (LC) or polyunsaturated fatty acids (PUFA). Therefore, the oil extracted from fish for human document.forms[0].elements[13].select();consumption is rich in PUFA with high omega-3 fatty acid content. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) of all of the omega-3 fatty acids, are considered beneficial essential oils for humans with a wide range of health benefits. These include brain and neural development in infants, general wellbeing of adults and drug delivery through precursor molecules. They have become one of the most extensively studied organisms for industrial oil preparations as PUFA extraction from fish becomes less profitable. Many forms of these Thraustochytrid oils are being trialled for human consumption all over the world. In Australia, there has been little research performed on these organisms in the past ten years. A few Australian studies have been conducted in the form of comparative studies related to PUFA production within the related genera, but not focussed on their identification or cellular and genomic characterisation. Therefore, the main aim of this study was to investigate the morphological and genetic characteristics of Australian Thraustochytrids in order to aid in their identification and characterisation, as well as to better understand the effect of environmental conditions in the regulation of PUFA production. It was also noted that there was a knowledge gap in the preservation and total genomic DNA extraction of these organisms for the purposes of scientific research. The cryopreservation of these organisms for studies around the world follows existing generic methods. However, it is well understood that many of these generic methods attract not only high costs for chemicals, but also uses considerable storage space and other resources, all of which can be improved with new or modified approaches. In this context, a simple and inexpensive bead preservation method is described, without compromising the storage shelf life. We also describe, for the first time, the effects of culture age on the successful cryopreservation of Thraustochytrids. It was evident in the literature that DNA and RNA extractions for molecular and genetic studies of Thraustochytrids follow the classical phenol-chloroform extraction methods. It was also observed that modern protocols failed to avoid the use of phenol-chloroform rather than improving preparation and cell disruption. In order to provide a high quantity and quality DNA extraction, a modified protocol has been introduced that employs the use of modern commercial extraction kits and standard laboratory equipment. Thraustochytrids have been shown to be highly conserved in their 18S rDNA gene sequences, which is used as the current standard for identification. It was demonstrated that the 18S rDNA gene sequence limits the recognition of closely related genera or within the genera from each member. Therefore, it was proposed that another profile, such as a randomly amplified polymorphic DNA (RAPD) based profiling system, be tested for use in the characterisation of Thraustochytrids. The RAPD profiles were shown to provide a unique DNA fingerprint for each isolate and small variations in their genome were able to be detected. This method involved the use of a minimum number of standard arbitrary primers and with an increase in the number of different primers used, a very high discrimination between organisms could be achieved. However, the method was not suitable for taxonomic purposes because the results did not correlate with other taxonomic features such as morphology. Another knowledge gap was found with respect to Australian Thraustochytrid growth characteristics, in that these had not been recorded and published. In order to rectify this, a record of colony and microscopic features of 12 selected isolates was performed. The results of preliminary studies indicated that further microbiological and biochemical studies are needed for full characterisation of these organisms. This information is of great importance to bio-prospecting of new Thraustochytrids from Australian ecosystems and would allow for their accurate identification, and so permit the prediction of their PUFA capability by comparison with related genera/species. It was well recognized that environmental stress plays a role in the PUFA production and is mainly due to the reactive oxygen species as abiotic stress (Chiou et al., 2001; Okuyama et al., 2008; Shabala et al., 2009; Shabala et al., 2001). In this aspect, this study makes the first attempt towards better understanding of this phenomenon by way of the use of real-time PCR for the detection of environmental effects on the regulation of PUFA production. Three main environmental conditions including temperature, pH and oxygen availability were monitored as stress inducers. In summary, this study provides novel approaches for the preservation and handling of Thraustochytrids, their molecular biological features, taxonomy, characterisation and responses to environmental factors with respect to their oil production enzymes. The information produced from this study will prove to be vital for both industrial and scientific investigations in the future.
Resumo:
Extrapulmonary manifestations constitute 15 to 20% of tuberculosis cases, with lymph node tuberculosis (LNTB) as the most common form of infection. However, diagnosis and treatment advances are hindered by lack of understanding of LNTB biology. To identify host response, Mycobacterium tuberculosis infected lymph nodes from LNTB patients were studied by means of transcriptomics and quantitative proteomics analyses. The selected targets obtained by comparative analyses were validated by quantitative PCR and immunohistochemistry. This approach provided expression data for 8,728 transcripts and 102 proteins, differentially regulated in the infected human lymph node. Enhanced inflammation with upregulation of T-helper1-related genes, combined with marked dysregulation of matrix metalloproteinases, indicates tissue damage due to high immunoactivity at infected niche. This expression signature was accompanied by significant upregulation of an immunoregulatory gene, leukotriene A4 hydrolase, at both transcript and protein levels. Comparative transcriptional analyses revealed LNTB-specific perturbations. In contrast to pulmonary TB-associated increase in lipid metabolism, genes involved in fatty-acid metabolism were found to be downregulated in LNTB suggesting differential lipid metabolic signature. This study investigates the tissue molecular signature of LNTB patients for the first time and presents findings that indicate the possible mechanism of disease pathology through dysregulation of inflammatory and tissue-repair processes.
Resumo:
Mycobacterium tuberculosis genes Rv0844c/Rv0845 encoding the NarL response regulator and NarS histidine kinase are hypothesized to constitute a two-component system involved in the regulation of nitrate metabolism. However, there is no experimental evidence to support this. In this study, we established M. tuberculosis NarL/NarS as a functional two-component system and identified His(241) and Asp(61) as conserved phosphorylation sites in NarS and NarL, respectively. Transcriptional profiling between M. tuberculosis H37Rv and Delta narL mutant strain during exponential growth in broth cultures with or without nitrate defined an similar to 30-gene NarL regulon that exhibited significant overlap with DevR-regulated genes, thereby implicating a role for the DevR response regulator in the regulation of nitrate metabolism. Notably, expression analysis of a subset of genes common to NarL and DevR regulons in M. tuberculosis Delta devR, Delta devS Delta dosT, and Delta narL mutant strains revealed that in response to nitrite produced during aerobic nitrate metabolism, the DevRS/DosT regulatory system plays a primary role that is augmented by NarL. Specifically, NarL itself was unable to bind to the narK2, acg, and Rv3130c promoters in phosphorylated or unphosphorylated form; however, its interaction with DevR similar to P resulted in cooperative binding, thereby enabling co-regulation of these genes. These findings support the role of physiologically derived nitrite as a metabolic signal in mycobacteria. We propose NarL-DevR binding, possibly as a heterodimer, as a novel mechanism for co-regulation of gene expression by the DevRS/DosT and NarL/NarS regulatory systems.
Resumo:
The neurodegenerative disease Friedreich's ataxia (FRDA) is the most common autosomal-recessively inherited ataxia and is caused by a GAA triplet repeat expansion in the first intron of the frataxin gene. In this disease, transcription of frataxin, a mitochondrial protein involved in iron homeostasis, is impaired, resulting in a significant reduction in mRNA and protein levels. Global gene expression analysis was performed in peripheral blood samples from FRDA patients as compared to controls, which suggested altered expression patterns pertaining to genotoxic stress. We then confirmed the presence of genotoxic DNA damage by using a gene-specific quantitative PCR assay and discovered an increase in both mitochondrial and nuclear DNA damage in the blood of these patients (p<0.0001, respectively). Additionally, frataxin mRNA levels correlated with age of onset of disease and displayed unique sets of gene alterations involved in immune response, oxidative phosphorylation, and protein synthesis. Many of the key pathways observed by transcription profiling were downregulated, and we believe these data suggest that patients with prolonged frataxin deficiency undergo a systemic survival response to chronic genotoxic stress and consequent DNA damage detectable in blood. In conclusion, our results yield insight into the nature and progression of FRDA, as well as possible therapeutic approaches. Furthermore, the identification of potential biomarkers, including the DNA damage found in peripheral blood, may have predictive value in future clinical trials.
Resumo:
BACKGROUND & AIMS:
Gastric cancer (GC) is a heterogeneous disease comprising multiple subtypes that have distinct biological properties and effects in patients. We sought to identify new, intrinsic subtypes of GC by gene expression analysis of a large panel of GC cell lines. We tested if these subtypes might be associated with differences in patient survival times and responses to various standard-of-care cytotoxic drugs.
METHODS:
We analyzed gene expression profiles for 37 GC cell lines to identify intrinsic GC subtypes. These subtypes were validated in primary tumors from 521 patients in 4 independent cohorts, where the subtypes were determined by either expression profiling or subtype-specific immunohistochemical markers (LGALS4, CDH17). In vitro sensitivity to 3 chemotherapy drugs (5-fluorouracil, cisplatin, oxaliplatin) was also assessed.
RESULTS:
Unsupervised cell line analysis identified 2 major intrinsic genomic subtypes (G-INT and G-DIF) that had distinct patterns of gene expression. The intrinsic subtypes, but not subtypes based on Lauren's histopathologic classification, were prognostic of survival, based on univariate and multivariate analysis in multiple patient cohorts. The G-INT cell lines were significantly more sensitive to 5-fluorouracil and oxaliplatin, but more resistant to cisplatin, than the G-DIF cell lines. In patients, intrinsic subtypes were associated with survival time following adjuvant, 5-fluorouracil-based therapy.
CONCLUSIONS:
Intrinsic subtypes of GC, based on distinct patterns of expression, are associated with patient survival and response to chemotherapy. Classification of GC based on intrinsic subtypes might be used to determine prognosis and customize therapy.
Resumo:
Gene expression profiling signatures may be used to classify the subtypes of Myelodysplastic syndrome (MDS) patients. However, there are few reports on the global methylation status in MDS. The integration of genome-wide epigenetic regulatory marks with gene expression levels would provide additional information regarding the biological differences between MDS and healthy controls. Gene expression and methylation status were measured using high-density microarrays. A total of 552 differentially methylated CpG loci were identified as being present in low-risk MDS; hypermethylated genes were more frequent than hypomethylated genes. In addition, mRNA expression profiling identified 1005 genes that significantly differed between low-risk MDS and the control group. Integrative analysis of the epigenetic and expression profiles revealed that 66.7% of the hypermethylated genes were underexpressed in low-risk MDS cases. Gene network analysis revealed molecular mechanisms associated with the low-risk MDS group, including altered apoptosis pathways. The two key apoptotic genes BCL2 and ETS1 were identified as silenced genes. In addition, the immune response and micro RNA biogenesis were affected by the hypermethylation and underexpression of IL27RA and DICER1. Our integrative analysis revealed that aberrant epigenetic regulation is a hallmark of low-risk MDS patients and could have a central role in these diseases.
Resumo:
Clinically, our ability to predict disease outcome for patients with early stage lung cancer is currently poor. To address this issue, tumour specimens were collected at surgery from non-small cell lung cancer (NSCLC) patients as part of the European Early Lung Cancer (EUELC) consortium. The patients were followed-up for three years post-surgery and patients who suffered progressive disease (PD, tumour recurrence, metastasis or a second primary) or remained disease-free (DF) during follow-up were identified. RNA from both tumour and adjacent-normal lung tissue was extracted from patients and subjected to microarray expression profiling. These samples included 36 adenocarcinomas and 23 squamous cell carcinomas from both PD and DF patients. The microarray data was subject to a series of systematic bioinformatics analyses at gene, network and transcription factor levels. The focus of these analyses was 2-fold: firstly to determine whether there were specific biomarkers capable of differentiating between PD and DF patients, and secondly, to identify molecular networks which may contribute to the progressive tumour phenotype. The experimental design and analyses performed permitted the clear differentiation between PD and DF patients using a set of biomarkers implicated in neuroendocrine signalling and allowed the inference of a set of transcription factors whose activity may differ according to disease outcome. Potential links between the biomarkers, the transcription factors and the genes p21/CDKN1A and Myc, which have previously been implicated in NSCLC development, were revealed by a combination of pathway analysis and microarray meta-analysis. These findings suggest that neuroendocrine-related genes, potentially driven through p21/CDKN1A and Myc, are closely linked to whether or not a NSCLC patient will have poor clinical outcome.
Resumo:
The introduction of microarray technology to the scientific and medical communities has dramatically changed the way in which we now address basic biomedical questions. Expression profiling using microarrays facilitates an experimental approach where alterations in the transcript level of entire transcriptomes can be simultaneously assayed in response to defined stimuli. We have used microarray analysis to identify downstream transcriptional targets of the BRCA1 (Breast Cancer 1) tumour-suppressor gene as a means of defining its function. BRCA1 has been implicated in the predisposition to early onset breast and ovarian cancer and while its exact function remains to be defined, roles in DNA repair, cell-cycle control and transcriptional regulation have been implied. In the current study we have generated cell lines with tetracycline-regulated, inducible expression of BRCA1 as a tool to identify genes, which might represent important effectors of BRCA1 function. Oligonucleotide array-based expression profiling identified a number of genes that were upregulated at various times following inducible expression of BRCA1 including the DNA damage-responsive gene GADD45 (Growth Arrest after DNA Damage). Identified targets were confirmed by Northern blot analysis and their functional significance as BRCA1 targets examined.
Resumo:
The introduction of microarray technology to the scientific and medical communities has fundamentally altered the way in which we now address basic biomedical questions. Microarrays technology facilitates a more complete and inclusive experimental approach where alterations in the transcript level of entire genomes can be simultaneously assayed in response to a variety of stimuli. Conceptually different approaches to the development of microarray technology have resulted in the generation of two different array formats: oligonucleotide arrays and cDNA arrays. The application of microarray and related technologies to identify specific targets of defined genes that have clearly been implicated in cancer progression requires a specific experimental approach. The objective of tiffs approach is to define changes in transcriptional profile that occur in response to modulating the expression level of the gene to be studied. The resulting altered expression profile can then be viewed as a blueprint by which that gene effects its cellular function. We have used oligonucleotide array-based expression profiling in collaboration with Affymetrix to identify downstream transcriptional targets of the BRCA1 tumor-suppressor gene as a means of defining its function. BRCA1 has been implicated in at least three functional pathways, namely, mediating the cellular response to DNA damage, as a cell cycle checkpoint protein and in the regulation of transcription. The physiological significance of these properties and their implications for the function of BRCA1 as a tumor-suppressor gene remain to be defined.
Resumo:
One of the major challenges in systems biology is to understand the complex responses of a biological system to external perturbations or internal signalling depending on its biological conditions. Genome-wide transcriptomic profiling of cellular systems under various chemical perturbations allows the manifestation of certain features of the chemicals through their transcriptomic expression profiles. The insights obtained may help to establish the connections between human diseases, associated genes and therapeutic drugs. The main objective of this study was to systematically analyse cellular gene expression data under various drug treatments to elucidate drug-feature specific transcriptomic signatures. We first extracted drug-related information (drug features) from the collected textual description of DrugBank entries using text-mining techniques. A novel statistical method employing orthogonal least square learning was proposed to obtain drug-feature-specific signatures by integrating gene expression with DrugBank data. To obtain robust signatures from noisy input datasets, a stringent ensemble approach was applied with the combination of three techniques: resampling, leave-one-out cross validation, and aggregation. The validation experiments showed that the proposed method has the capacity of extracting biologically meaningful drug-feature-specific gene expression signatures. It was also shown that most of signature genes are connected with common hub genes by regulatory network analysis. The common hub genes were further shown to be related to general drug metabolism by Gene Ontology analysis. Each set of genes has relatively few interactions with other sets, indicating the modular nature of each signature and its drug-feature-specificity. Based on Gene Ontology analysis, we also found that each set of drug feature (DF)-specific genes were indeed enriched in biological processes related to the drug feature. The results of these experiments demonstrated the pot- ntial of the method for predicting certain features of new drugs using their transcriptomic profiles, providing a useful methodological framework and a valuable resource for drug development and characterization.