976 resultados para frequency coupling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of air–sea coupling in the simulation of the Madden–Julian oscillation (MJO) is explored using two configurations of the Hadley Centre atmospheric model (AGCM), GA3.0, which differ only in F, a parameter controlling convective entrainment and detrainment. Increasing F considerably improves deficient MJO-like variability in the Indian and Pacific Oceans, but variability in and propagation through the Maritime Continent remains weak. By coupling GA3.0 in the tropical Indo-Pacific to a boundary-layer ocean model, KPP, and employing climatological temperature corrections, well resolved air–sea interactions are simulated with limited alterations to the mean state. At default F, when GA3.0 has a poor MJO, coupling produces a stronger MJO with some eastward propagation, although both aspects remain deficient. These results agree with previous sensitivity studies using AGCMs with poor variability. At higher F, coupling does not affect MJO amplitude but enhances propagation through the Maritime Continent, resulting in an MJO that resembles observations. A sensitivity experiment with coupling in only the Indian Ocean reverses these improvements, suggesting coupling in the Maritime Continent and West Pacific is critical for propagation. We hypothesise that for AGCMs with a poor MJO, coupling provides a “crutch” to artificially augment MJO-like activity through high-frequency SST anomalies. In related experiments, we employ the KPP framework to analyse the impact of air–sea interactions in the fully coupled GA3.0, which at default F shows a similar MJO to uncoupled GA3.0. This is due to compensating effects: an improvement from coupling and a degradation from mean-state errors. Future studies on the role of coupling should carefully separate these effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of experiments conducted in a 2m high flume at large Reynolds numbers are reported in this paper. The flume was partitioned into two compartments. Flow entered the bottom of the upstream test compartment as a wall jet, at jet Reynolds number ranging from 11,000 to 170,000. Periodic oscillations of the free surface in the two compartments resembling the oscillatory flow in a liquid-filled U-tube, and large coherent structures formed above the potential core of the wall jet were observed. Coupling of the U-tube oscillations and vortex shedding is attributed to fluid-dynamic and fluid-resonant feedback processes. For test compartment length, Lc=0.8m , fluid-resonant feedback was found to be dominant, and the shear layer was observed to oscillate at the natural frequency of the two-compartment, U-tube system. The observed U-tube oscillations are initiated by the oscillations of the shear layer at a frequency equal to the subharmonic component for the U-tube. The flow oscillations were generally weaker for Lc=1.2 and 2.0m with oscillation frequencies governed by fluid-dynamic feedback, verified from a comparison with the results from a previously reported study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine two-component Gross-Pitaevskii equations with nonlinear and linear couplings, assuming self-attraction in one species and self-repulsion in the other, while the nonlinear inter-species coupling is also repulsive. For initial states with the condensate placed in the self-attractive component, a sufficiently strong linear coupling switches the collapse into decay (in the free space). Setting the linear-coupling coefficient to be time-periodic (alternating between positive and negative values, with zero mean value) can make localized states quasi-stable for the parameter ranges considered herein, but they slowly decay. The 2D states can then be completely stabilized by a weak trapping potential. In the case of the high-frequency modulation of the coupling constant, averaged equations are derived, which demonstrate good agreement with numerical solutions of the full equations. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycrystalline or single-crystal ferroelectric materials present dielectric dispersion in the frequency range 100 MHz-1 GHz that has been attributed to a dispersive ( relaxation-like) mechanism as well as a resonant mechanism. Particularly in 'normal' ferroelectric materials, a dielectric response that is indistinguishable from dispersion or a resonance has been reported. Nevertheless, the reported results are not conclusive enough to distinguish each mechanism clearly. A detailed study of the dielectric dispersion phenomenon has been carried out in PbTiO3-based ferroelectric ceramics, with the composition Pb1-xLaxTiO3 (x = 0.15), over a wide range of temperatures and frequencies, including microwave frequencies. The dielectric response of La-modified lead titanate ferroelectric ceramics, in 'virgin' and poled states, has been investigated in the temperature and frequency ranges 300-450 K and 1 kHz-2 GHz, respectively. The results revealed that the frequency dependence of the dielectric anomalies, depending on the measuring direction with respect to the orientation of the macroscopic polarization, may be described as a general mechanism related to an 'over-damped' resonant process. Applying either a uniaxial stress along the measurement field direction or a poling electric field parallel and/or perpendicular to the measuring direction, a resonant response of the real and imaginary components of the dielectric constant is observed, in contrast to the dispersion behavior obtained in the absence of the stress, for the 'virgin' samples. Both results, resonance and/or dispersion, can be explained by considering a common mechanism involving a resonant response (damped and/or over-damped) which is strongly affected by a ferroelastic-ferroelectric coupling, contributing to the low-field dielectric constant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this investigation was to determine whether the coupling between dynamic somatosensory information and body sway is similar in children and adults. Thirty children (4-, 6-, and 8-year-olds) and 10 adults stood upright, with feet parallel, and lightly contacting the fingertip to a rigid metal plate that moved rhythmically at 0.2, 0.5, and 0.8 Hz. Light touch to the moving contact surface induced postural sway in all participants. The somatosensory stimulus produced a broadband frequency response in children, while the adult response was primarily at the driving frequency. Gain, as a function of frequency, was qualitatively the same in children and adults. Phase decreased less in 4-year-olds than other age groups, suggesting a weaker coupling to position information in the sensory stimulus. Postural sway variability was larger in children than adults. These findings suggest that, even as young as age 6, children show well-developed coupling to the sensory stimulus. However, unlike adults, this coupling is not well focused at the frequency specified by the somatosensory signal. Children may be unable to uncouple from sensory information that is less relevant to the task, resulting in a broadband response in their frequency spectrum. Moreover, higher sway variability may not result from the sensory feedback process, but rather from the children's underdeveloped ability to estimate an internal model of body orientation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The class of piezoelectric actuators considered in this paper consists of a multi-flexible structure actuated by two or more piezoceramic devices that must generate different output displacements and forces at different specified points of the domain and in different directions. The devices were modeled by finite element using the software ANSYS and the topology optimization method. The following XY actuators were build to achieve maximum displacement in the X and Y directions with a minimum crosstalk between them. The actuator prototypes are composed of an aluminum structure, manufactured by using a wire Electrical Discharge Machining, which are bonded to rectangular PZT5A piezoceramic blocks by using epoxy resin. Multi-actuator piezoelectric device displacements can be measured by using optical interferometry, since it allows dynamic measurements in the kHz range, which is of the order of the first resonance frequency of these piezomechanisms. A Michelson-type interferometer, with a He-Ne laser source, is used to measure the displacement amplitudes in nanometric range. A new optical phase demodulation technique is applied, based on the properties of the triangular waveform drive voltage applied to the XY piezoelectric nanopositioner. This is a low-phase-modulation-depth-like technique that allows the rapid interferometer auto-calibration. The measurements were performed at 100 Hz frequency, and revealed that the device is linear voltage range utilized in this work. The ratio between the generated and coupled output displacements and the drive voltages is equal to 10.97 nm/V and 1.76 nm/V, respectively, which corresponds to a 16% coupling rate. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Central mechanisms of coupling between respiratory and sympathetic systems are essential for the entrainment between the enhanced respiratory drive and sympathoexcitation in response to hypoxia. However, the brainstem nuclei and neuronal network involved in these respiratory-sympathetic interactions remain unclear. Here, we evaluated whether the increase in expiratory activity and expiratory-modulated sympathoexcitation produced by the peripheral chemoreflex activation involves the retrotrapezoid nucleus/parafacial respiratory region (RTN/pFRG). Using decerebrated arterially perfused in situ rat preparations (60–80 g), we recorded the activities of thoracic sympathetic (tSN), phrenic (PN), and abdominal nerves (AbN) as well as the extracellular activity of RTN/pFRG expiratory neurons, and reflex responses to chemoreflex activation were evaluated before and after inactivation of the RTN/pFRG region with muscimol (1 mM). In the RTN/pFRG, we identified late-expiratory (late-E) neurons (n = 5) that were silent at resting but fired coincidently with the emergence of late-E bursts in AbN after peripheral chemoreceptor activation. Bilateral muscimol microinjections into the RTN/pFRG region (n = 6) significantly reduced basal PN frequency, mean AbN activity, and the amplitude of respiratory modulation of tSN (P < 0.05). With respect to peripheral chemoreflex responses, muscimol microinjections in the RTN/pFRG enhanced the PN inspiratory response, abolished the evoked late-E activity of AbN, but did not alter either the magnitude or pattern of the tSN reflex response. These findings indicate that the RTN/pFRG region is critically involved in the processing of the active expiratory response but not of the expiratory-modulated sympathetic response to peripheral chemoreflex activation of rat in situ preparations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a better understanding of the processing at the nucleus tractus solitarius (NTS) level of the autonomic and respiratory responses to peripheral chemoreceptor activation, herein we evaluated the role of glutamatergic neurotransmission in the intermediate (iNTS) and caudal NTS (cNTS) on baseline respiratory parameters and on chemoreflex-evoked responses using the in situ working heart-brain stem preparation (WHBP). The activities of phrenic (PND), cervical vagus (cVNA), and thoracic sympathetic (tSNA) nerves were recorded before and after bilateral microinjections of kynurenic acid (Kyn, 5 nmol/20 nl) into iNTS, cNTS, or both simultaneously. In WHBP, baseline sympathetic discharge markedly correlated with phrenic bursts (inspiration). However, most of sympathoexcitation elicited by chemoreflex activation occurred during expiration. Kyn microinjected into iNTS or into cNTS decreased the postinspiratory component of cVNA and increased the duration and frequency of PND. Kyn into iNTS produced no changes in sympathoexcitatory and tachypneic responses to peripheral chemoreflex activation, whereas into cNTS, a reduction of the sympathoexcitation, but not of the tachypnea, was observed. The pattern of phrenic and sympathetic coupling during the chemoreflex activation was an inspiratory-related rather than an expiratory-related sympathoexcitation. Kyn simultaneously into iNTS and cNTS produced a greater decrease in postinspiratory component of cVNA and increase in frequency and duration of PND and abolished the respiratory and autonomic responses to chemoreflex activation. The data show that glutamatergic neurotransmission in the iNTS and cNTS plays a tonic role on the baseline respiratory rhythm, contributes to the postinspiratory activity, and is essential to expiratory-related sympathoexcitation observed during chemoreflex activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new methodology for the synthesis of tunable patch filters is presented. The methodology helps the designer to perform a theoretical analysis of the filter through a coupling matrix that includes the effect of the tuning elements used to tune the filter. This general methodology accounts for any tuning parameter desired and was applied to the design of a tunable dual-mode patch filter with independent control of center frequency and bandwidth (BW). The bandpass filter uses a single triangular resonator with two etched slots that split the fundamental degenerate modes and form the filter passband. Varactor diodes assembled across the slots are used to vary the frequency of each degenerate fundamental mode independently, which is feasible due to the nature of the coupling scheme of the filter. The varactor diode model used in simulations, their assembling, the dc bias configuration, and measured results are presented. The theory results are compared to the simulations and to measurements showing a very good agreement and validating the proposed methodology. The fabricated filter presents an elliptic response with 20% of center frequency tuning range around 3.2 GHz and a fractional BW variation from 4% to 12% with low insertion loss and high power handling with a 1-dB compression point higher than +14.5 dB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Moraes DJ, Dias MB, Cavalcanti-Kwiatkoski R, Machado BH, Zoccal DB. Contribution of retrotrapezoid nucleus/parafacial respiratory region to the expiratory-sympathetic coupling in response to peripheral chemoreflex in rats. J Neurophysiol 108: 882-890, 2012. First published May 16, 2012; doi:10.1152/jn.00193.2012.-Central mechanisms of coupling between respiratory and sympathetic systems are essential for the entrainment between the enhanced respiratory drive and sympathoexcitation in response to hypoxia. However, the brainstem nuclei and neuronal network involved in these respiratory-sympathetic interactions remain unclear. Here, we evaluated whether the increase in expiratory activity and expiratory-modulated sympathoexcitation produced by the peripheral chemoreflex activation involves the retrotrapezoid nucleus/parafacial respiratory region (RTN/pFRG). Using decerebrated arterially perfused in situ rat preparations (60-80 g), we recorded the activities of thoracic sympathetic (tSN), phrenic (PN), and abdominal nerves (AbN) as well as the extracellular activity of RTN/pFRG expiratory neurons, and reflex responses to chemoreflex activation were evaluated before and after inactivation of the RTN/pFRG region with muscimol (1 mM). In the RTN/pFRG, we identified late-expiratory (late-E) neurons (n = 5) that were silent at resting but fired coincidently with the emergence of late-E bursts in AbN after peripheral chemoreceptor activation. Bilateral muscimol microinjections into the RTN/pFRG region (n = 6) significantly reduced basal PN frequency, mean AbN activity, and the amplitude of respiratory modulation of tSN (P < 0.05). With respect to peripheral chemoreflex responses, muscimol microinjections in the RTN/pFRG enhanced the PN inspiratory response, abolished the evoked late-E activity of AbN, but did not alter either the magnitude or pattern of the tSN reflex response. These findings indicate that the RTN/pFRG region is critically involved in the processing of the active expiratory response but not of the expiratory-modulated sympathetic response to peripheral chemoreflex activation of rat in situ preparations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An explosive synchronization can be observed in scale-free networks when Kuramoto oscillators have natural frequencies equal to their number of connections. The present paper reports on mean-field approximations to determine the critical coupling of such explosive synchronization. It has been verified that the equation obtained for the critical coupling has an inverse dependence on the network average degree. This expression differs from those whose frequency distributions are unimodal and even. In this case, the critical coupling depends on the ratio between the first and second statistical moments of the degree distribution. Numerical simulations were also conducted to verify our analytical results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The g-factor is a constant which connects the magnetic moment $vec{mu}$ of a charged particle, of charge q and mass m, with its angular momentum $vec{J}$. Thus, the magnetic moment can be writen $ vec{mu}_J=g_Jfrac{q}{2m}vec{J}$. The g-factor for a free particle of spin s=1/2 should take the value g=2. But due to quantum electro-dynamical effects it deviates from this value by a small amount, the so called g-factor anomaly $a_e$, which is of the order of $10^{-3}$ for the free electron. This deviation is even bigger if the electron is exposed to high electric fields. Therefore highly charged ions, where electric field strength gets values on the order of $10^{13}-10^{16}$V/cm at the position of the bound electron, are an interesting field of investigations to test QED-calculations. In previous experiments [H"aff00,Ver04] using a single hydrogen-like ion confined in a Penning trap an accuracy of few parts in $10^{-9}$ was obtained. In the present work a new method for precise measurement of magnetic the electronic g-factor of hydrogen-like ions is discussed. Due to the unavoidable magnetic field inhomogeneity in a Penning trap, a very important contribution to the systematic uncertainty in the previous measurements arose from the elevated energy of the ion required for the measurement of its motional frequencies. Then it was necessary to extrapolate the result to vanishing energies. In the new method the energy in the cyclotron degree of freedom is reduced to the minimum attainable energy. This method consist in measuring the reduced cyclotron frequency $nu_{+}$ indirectly by coupling the axial to the reduced cyclotron motion by irradiation of the radio frequency $nu_{coup}=nu_{+}-nu_{ax}+delta$ where $delta$ is, in principle, an unknown detuning that can be obtained from the knowledge of the coupling process. Then the only unknown parameter is the desired value of $nu_+$. As a test, a measurement with, for simplicity, artificially increased axial energy was performed yielding the result $g_{exp}=2.000~047~020~8(24)(44)$. This is in perfect agreement with both the theoretical result $g_{theo}=2.000~047~020~2(6)$ and the previous experimental result $g_{exp1}=2.000~047~025~4(15)(44).$ In the experimental results the second error-bar is due to the uncertainty in the accepted value for the electron's mass. Thus, with the new method a higher accuracy in the g-factor could lead by comparison to the theoretical value to an improved value of the electron's mass. [H"af00] H. H"affner et al., Phys. Rev. Lett. 85 (2000) 5308 [Ver04] J. Verd'u et al., Phys. Rev. Lett. 92 (2004) 093002-1

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work the numerical coupling of thermal and electric network models with model equations for optoelectronic semiconductor devices is presented. Modified nodal analysis (MNA) is applied to model electric networks. Thermal effects are modeled by an accompanying thermal network. Semiconductor devices are modeled by the energy-transport model, that allows for thermal effects. The energy-transport model is expandend to a model for optoelectronic semiconductor devices. The temperature of the crystal lattice of the semiconductor devices is modeled by the heat flow eqaution. The corresponding heat source term is derived under thermodynamical and phenomenological considerations of energy fluxes. The energy-transport model is coupled directly into the network equations and the heat flow equation for the lattice temperature is coupled directly into the accompanying thermal network. The coupled thermal-electric network-device model results in a system of partial differential-algebraic equations (PDAE). Numerical examples are presented for the coupling of network- and one-dimensional semiconductor equations. Hybridized mixed finite elements are applied for the space discretization of the semiconductor equations. Backward difference formluas are applied for time discretization. Thus, positivity of charge carrier densities and continuity of the current density is guaranteed even for the coupled model.