972 resultados para fractured grains
Resumo:
© 2014, Springer-Verlag Berlin Heidelberg.The evolution of capillary forces during evaporation and the corresponding changes in the geometrical characteristics of liquid (water) bridges between two glass spheres with constant separation are examined experimentally. For comparison, the liquid bridges were also tested for mechanical extension (at constant volume). The obtained results reveal substantial differences between the evolution of capillary force due to evaporation and the evolution due to extension of the liquid bridges. During both evaporation and extension, the change of interparticle capillary forces consists in a force decrease to zero either gradually or via rupture of the bridge. At small separations between the grains (short & wide bridges) during evaporation and at large volumes during extension, there is a slight initial increase of force. During evaporation, the capillary force decreases slowly at the beginning of the process and quickly at the end of the process; during extension, the capillary force decreases quickly at the beginning and slowly at the end of the process. Rupture during evaporation of the bridges occurs most abruptly for bridges with wider separations (tall and thin), sometimes occurring after only 25% of the water volume was evaporated. The evolution (pinning/depinning) of two geometrical characteristics of the bridge, the diameter of the three-phase contact line and the “apparent” contact angle at the solid/liquid/gas interface, seem to control the capillary force evolution. The findings are of relevance to the mechanics of unsaturated granular media in the final phase of drying.
Resumo:
© 2015 Elsevier Ltd. All rights reserved.Laboratory tests on microscale are reported in which millimeter-sized amorphous silica cubes were kept highly compressed in a liquid environment of de-ionized water solutions with different silica ion concentrations for up to four weeks. Such an arrangement simulates an early evolution of bonds between two sand grains stressed in situ. In-house designed Grain Indenter-Puller apparatus allowed measuring strength of such contacts after 3-4 weeks. Observations reported for the first time confirm a long-existing hypothesis that a stressed contact with microcracks generates silica polymers, forming a bonding structure between the grains on a timescale in the order of a few weeks. Such structure exhibits intergranular tensile force at failure of 1-1.5 mN when aged in solutions containing silica ion concentrations of 200-to 500-ppm. The magnitude of such intergranular force is 2-3 times greater than that of water capillary force between the same grains.
Resumo:
To assess the contribution of accumulated winter precipitation and glacial meltwater to the recharge of deep ground water flow systems in fracture crystalline rocks, measurements of environmental isotope ratios, hydrochemical composition, and in situ parameters of ground water were performed in a deep tunnel. The measurements demonstrate the significance of these ground water recharge components for deep ground water flow systems in fractured granites of a high alpine catchment in the Central Alps, Switzerland. Hydrochemical and in situ parameters, as well as d18O in ground water samples collected in the tunnel, show only small temporal variations. The precipitation record of d18O shows seasonal variations of ~14‰ and a decrease of 0.23‰ ± 0.03‰ per 100 m elevation gain. d2H and d18O in precipitation are well correlated and plot close to the meteoric water line, as well as d2H and d18O in ground water samples, reflecting the meteoric origin of the latter. The depletion of 18O in ground water compared to 18O content in precipitation during the ground water recharge period indicates significant contributions from accumulated depleted winter precipitation to ground water recharge. The hydrochemical composition of the encountered ground water, Na-Ca-HCO3-SO4(-F), reflects an evolution of the ground water along the flowpath through the granite body. Observed tritium concentrations in ground water range from 2.6 to 16.6 TU, with the lowest values associated with a local negative temperature anomaly and anomalous depleted 18O in ground water. This demonstrates the effect of local ground water recharge from meltwater of submodern glacial ice. Such localized recharge from glaciated areas occurs along preferential flowpaths within the granite body that are mainly controlled by observed hydraulic active shear fractures and cataclastic faults.
Resumo:
The objective of this study was to determine how structure, stratigraphy, and weathering influence fate and transport of contaminants (particularly U) in the ground water and geologic material at the Department of Energy (DOE) Environmental Remediation Sciences Department (ERSD) Field Research Center (FRC). Several cores were collected near four former unlined adjoining waste disposal ponds. The cores were collected, described, analyzed for U, and compared with ground water geochemistry from surrounding multilevel wells. At some locations, acidic U-contaminated ground water was found to preferentially flow in small remnant fractures weathering the surrounding shale (nitric acid extractable U [UNA] usually <50 mg kg–1) into thin (
Resumo:
This paper reports the results of models of dark cloud chemistry incorporating a depth dependent density distribution with diffusive mixing and adsorption onto grains. The model is based on the approach taken by Xie et al. (1995), with the addition of grain accretion effects. Without diffusion, the central regions of the cloud freeze out in less than 10(7) years. Freeze-out time is dependent on density, so the diffuse outer region of the cloud remains abundant in gas for about an order of magnitude longer. We find that fairly small amounts of diffusive mixing can delay freeze-out at the centre of the model cloud for a time up to an order of magnitude greater than without diffusion, due to material diffusing inward from the edges of the cloud. The gas-phase lifetime of the cloud core can thus be increased by up to an order of magnitude or more by this process. We have run three different grain models with various diffusion coefficients to investigate the effects of changing the sticking parameters.
Resumo:
The nonlinear aspects of charged dust grain motion in a one-dimensional dusty plasma (DP) monolayer are discussed. Both horizontal (longitudinal, acoustic mode) and vertical (transverse, optic mode) displacements are considered, and various types of localized excitations are reviewed, in a continuum approximation. Dust crystals are shown to support nonlinear kink-shaped supersonic longitudinal solitary excitations, as well as modulated envelope (either longitudinal or transverse) localized modes. The possibility for Discrete Breather (DB-) type excitations (Intrinsic Localized Modes, ILMs) to occur is investigated, from first principles. These highly localized excitations owe their existence to lattice discreteness, in combination with the interaction and/or
substrate (sheath) potential nonlinearity. This possibility may open new directions in DP- related research. The relation to previous results on atomic chains as well as to experimental results on strongly-coupled dust layers in gas discharge plasmas is discussed.