900 resultados para fractional-order control


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inspired in dynamic systems theory and Brewer’s contributions to apply it to economics, this paper establishes a bond graph model. Two main variables, a set of inter-connectivities based on nodes and links (bonds) and a fractional order dynamical perspective, prove to be a good macro-economic representation of countries’ potential performance in nowadays globalization. The estimations based on time series for 50 countries throughout the last 50 decades confirm the accuracy of the model and the importance of scale for economic performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this thesis is to narrow the gap between two different control techniques: the continuous control and the discrete event control techniques DES. This gap can be reduced by the study of Hybrid systems, and by interpreting as Hybrid systems the majority of large-scale systems. In particular, when looking deeply into a process, it is often possible to identify interaction between discrete and continuous signals. Hybrid systems are systems that have both continuous, and discrete signals. Continuous signals are generally supposed continuous and differentiable in time, since discrete signals are neither continuous nor differentiable in time due to their abrupt changes in time. Continuous signals often represent the measure of natural physical magnitudes such as temperature, pressure etc. The discrete signals are normally artificial signals, operated by human artefacts as current, voltage, light etc. Typical processes modelled as Hybrid systems are production systems, chemical process, or continuos production when time and continuous measures interacts with the transport, and stock inventory system. Complex systems as manufacturing lines are hybrid in a global sense. They can be decomposed into several subsystems, and their links. Another motivation for the study of Hybrid systems is the tools developed by other research domains. These tools benefit from the use of temporal logic for the analysis of several properties of Hybrid systems model, and use it to design systems and controllers, which satisfies physical or imposed restrictions. This thesis is focused in particular types of systems with discrete and continuous signals in interaction. That can be modelled hard non-linealities, such as hysteresis, jumps in the state, limit cycles, etc. and their possible non-deterministic future behaviour expressed by an interpretable model description. The Hybrid systems treated in this work are systems with several discrete states, always less than thirty states (it can arrive to NP hard problem), and continuous dynamics evolving with expression: with Ki ¡ Rn constant vectors or matrices for X components vector. In several states the continuous evolution can be several of them Ki = 0. In this formulation, the mathematics can express Time invariant linear system. By the use of this expression for a local part, the combination of several local linear models is possible to represent non-linear systems. And with the interaction with discrete events of the system the model can compose non-linear Hybrid systems. Especially multistage processes with high continuous dynamics are well represented by the proposed methodology. Sate vectors with more than two components, as third order models or higher is well approximated by the proposed approximation. Flexible belt transmission, chemical reactions with initial start-up and mobile robots with important friction are several physical systems, which profits from the benefits of proposed methodology (accuracy). The motivation of this thesis is to obtain a solution that can control and drive the Hybrid systems from the origin or starting point to the goal. How to obtain this solution, and which is the best solution in terms of one cost function subject to the physical restrictions and control actions is analysed. Hybrid systems that have several possible states, different ways to drive the system to the goal and different continuous control signals are problems that motivate this research. The requirements of the system on which we work is: a model that can represent the behaviour of the non-linear systems, and that possibilities the prediction of possible future behaviour for the model, in order to apply an supervisor which decides the optimal and secure action to drive the system toward the goal. Specific problems can be determined by the use of this kind of hybrid models are: - The unity of order. - Control the system along a reachable path. - Control the system in a safe path. - Optimise the cost function. - Modularity of control The proposed model solves the specified problems in the switching models problem, the initial condition calculus and the unity of the order models. Continuous and discrete phenomena are represented in Linear hybrid models, defined with defined eighth-tuple parameters to model different types of hybrid phenomena. Applying a transformation over the state vector : for LTI system we obtain from a two-dimensional SS a single parameter, alpha, which still maintains the dynamical information. Combining this parameter with the system output, a complete description of the system is obtained in a form of a graph in polar representation. Using Tagaki-Sugeno type III is a fuzzy model which include linear time invariant LTI models for each local model, the fuzzyfication of different LTI local model gives as a result a non-linear time invariant model. In our case the output and the alpha measure govern the membership function. Hybrid systems control is a huge task, the processes need to be guided from the Starting point to the desired End point, passing a through of different specific states and points in the trajectory. The system can be structured in different levels of abstraction and the control in three layers for the Hybrid systems from planning the process to produce the actions, these are the planning, the process and control layer. In this case the algorithms will be applied to robotics ¡V a domain where improvements are well accepted ¡V it is expected to find a simple repetitive processes for which the extra effort in complexity can be compensated by some cost reductions. It may be also interesting to implement some control optimisation to processes such as fuel injection, DC-DC converters etc. In order to apply the RW theory of discrete event systems on a Hybrid system, we must abstract the continuous signals and to project the events generated for these signals, to obtain new sets of observable and controllable events. Ramadge & Wonham¡¦s theory along with the TCT software give a Controllable Sublanguage of the legal language generated for a Discrete Event System (DES). Continuous abstraction transforms predicates over continuous variables into controllable or uncontrollable events, and modifies the set of uncontrollable, controllable observable and unobservable events. Continuous signals produce into the system virtual events, when this crosses the bound limits. If this event is deterministic, they can be projected. It is necessary to determine the controllability of this event, in order to assign this to the corresponding set, , controllable, uncontrollable, observable and unobservable set of events. Find optimal trajectories in order to minimise some cost function is the goal of the modelling procedure. Mathematical model for the system allows the user to apply mathematical techniques over this expression. These possibilities are, to minimise a specific cost function, to obtain optimal controllers and to approximate a specific trajectory. The combination of the Dynamic Programming with Bellman Principle of optimality, give us the procedure to solve the minimum time trajectory for Hybrid systems. The problem is greater when there exists interaction between adjacent states. In Hybrid systems the problem is to determine the partial set points to be applied at the local models. Optimal controller can be implemented in each local model in order to assure the minimisation of the local costs. The solution of this problem needs to give us the trajectory to follow the system. Trajectory marked by a set of set points to force the system to passing over them. Several ways are possible to drive the system from the Starting point Xi to the End point Xf. Different ways are interesting in: dynamic sense, minimum states, approximation at set points, etc. These ways need to be safe and viable and RchW. And only one of them must to be applied, normally the best, which minimises the proposed cost function. A Reachable Way, this means the controllable way and safe, will be evaluated in order to obtain which one minimises the cost function. Contribution of this work is a complete framework to work with the majority Hybrid systems, the procedures to model, control and supervise are defined and explained and its use is demonstrated. Also explained is the procedure to model the systems to be analysed for automatic verification. Great improvements were obtained by using this methodology in comparison to using other piecewise linear approximations. It is demonstrated in particular cases this methodology can provide best approximation. The most important contribution of this work, is the Alpha approximation for non-linear systems with high dynamics While this kind of process is not typical, but in this case the Alpha approximation is the best linear approximation to use, and give a compact representation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two different ways of performing low-energy electron diffraction (LEED) structure determinations for the p(2 x 2) structure of oxygen on Ni {111} are compared: a conventional LEED-IV structure analysis using integer and fractional-order IV-curves collected at normal incidence and an analysis using only integer-order IV-curves collected at three different angles of incidence. A clear discrimination between different adsorption sites can be achieved by the latter approach as well as the first and the best fit structures of both analyses are within each other's error bars (all less than 0.1 angstrom). The conventional analysis is more sensitive to the adsorbate coordinates and lateral parameters of the substrate atoms whereas the integer-order-based analysis is more sensitive to the vertical coordinates of substrate atoms. Adsorbate-related contributions to the intensities of integer-order diffraction spots are independent of the state of long-range order in the adsorbate layer. These results show, therefore, that for lattice-gas disordered adsorbate layers, for which only integer-order spots are observed, similar accuracy and reliability can be achieved as for ordered adsorbate layers, provided the data set is large enough.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report on integer and fractional microwave-induced resistance oscillations in a 2D electron system with high density and moderate mobility, and present results of measurements at high microwave intensity and temperature. Fractional microwave-induced resistance oscillations occur up to fractional denominator 8 and are quenched independently of their fractional order. We discuss our results and compare them with existing theoretical models. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper deals with a system involving a flexible rod subjected to magnetic forces that can bend it while simultaneously subjected to external excitations produces complex and nonlinear dynamic behavior, which may present different types of solutions for its different movement-related responses. This fact motivated us to analyze such a mechanical system based on modeling and numerical simulation involving both, integer order calculus (IOC) and fractional order calculus (FOC) approaches. The time responses, pseudo phase portraits and Fourier spectra have been presented. The results obtained can be used as a source for conduct experiments in order to obtain more realistic and more accurate results about fractional-order models when compared to the integer-order models. © Published under licence by IOP Publishing Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neste trabalho é proposta uma nova metodologia de projeto de estabilizadores de sistemas de potência baseada em teoria de sistemas de ordem fracionária (ESP-OF). A estratégia é baseada em uma generalização do projeto de compensadores do tipo rede avançoatraso (lead-lag) para o domínio de funções de transferência de ordem fracionária. Uma nova variável de projeto, a qual define a ordem da dinâmica fracionária do controlador, é sintonizada para se obter um compromisso entre um bom desempenho no amortecimento do modo eletromecânico dominante e uma robustez ampliada do ESP-OF. O desempenho do ESP-OF foi avaliado experimentalmente, em um sistema de potência em escala reduzida, localizado no Laboratório de Sistemas de Potência da Universidade Federal do Pará. A referida planta de teste apresenta uma estrutura típica do tipo gerador síncrono conectado a um barramento infinito e exibe um modo dominante de oscilação eletromecânica, de amortecimento extremamente reduzido, cujo valor da frequência natural é em torno de 1,2 Hz. O ESP-OF foi então projetado para ampliar o amortecimento relativo desse modo alvo, para toda a faixa de operação admissível. Para fins de implementação prática, primeiramente foram realizados testes experimentais para a identificação de um modelo nominal da planta, sob a forma de uma função de transferência pulsada, para uso na fase de projeto. O modelo obtido experimentalmente foi então validado e posteriormente utilizado tanto para o projeto do ESP-OF quanto para o projeto de um ESP convencional (utilizado para fins de comparação de desempenho). As leis de controle amortecedor do ESP-OF foram calculadas, convertidas para a forma de equações a diferenças e, subsequentemente, embarcadas em sistema digital baseado em microcontrolador DSPIC. Diversos testes de resposta ao impulso foram realizadas sob diferentes condições operacionais. As respectivas respostas dinâmicas dos sinais de saída da planta (desvio de potencia ativa) e do esforço de controle foram registradas para fins de análise. Os resultados experimentais mostraram que o ESP fracionário apresentou um desemprenho dinâmico e robustez similar em comparação com o desempenho obtido por um ESP convencional, para toda a faixa de operação investigada.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Biometria - IBB

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The relationship between whole-core compressional wave velocities and gamma-ray attenuation porosities of sediments cored at CRP-1 is examined and compared with results from core-plug samples and global models. Both core-plug and whole-core velocities show a strong dependence on porosity: this relationship appears to be independent of lithology. In the range from 0.1 to 0.4 of fractional porosity (Miocene strata), plug velocities are generally 0.2 - 0.5 km s-1 higher than whole-core velocities. Possible reasons include decreased rigidity in the whole core and diagenetic changes in the plugs. Possibly both velocity measurements are correct but neither is fully representative for in situ conditions. It appears that the core-plug results are more compatible with data from other regions than the whole-core data. After removing first-order compaction control from the whole-core porosity record, a second-order control by clay content can be quantified as a simple positive linear regression (R=0.6). In contrast, after correction for first-order control, porosity and velocity are not significantly influenced by lonestone abundance except for rare, very large lonestones.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33 (main), 35A22, 78A25, 93A30

Relevância:

90.00% 90.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26A33, 33C45

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 45K05, 35A05, 35S10, 35S15, 33E12

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 30B10, 33B15, 44A10, 47N70, 94C05

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mathematics Subject Classification: 65C05, 60G50, 39A10, 92C37