893 resultados para fractal sets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proving the unsatisfiability of propositional Boolean formulas has applications in a wide range of fields. Minimal Unsatisfiable Sets (MUS) are signatures of the property of unsatisfiability in formulas and our understanding of these signatures can be very helpful in answering various algorithmic and structural questions relating to unsatisfiability. In this paper, we explore some combinatorial properties of MUS and use them to devise a classification scheme for MUS. We also derive bounds on the sizes of MUS in Horn, 2-SAT and 3-SAT formulas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that a large class of Cantor-like sets of R-d, d >= 1, contains uncountably many badly approximable numbers, respectively badly approximable vectors, when d >= 2. An analogous result is also proved for subsets of R-d arising in the study of geodesic flows corresponding to (d+1)-dimensional manifolds of constant negative curvature and finite volume, generalizing the set of badly approximable numbers in R. Furthermore, we describe a condition on sets, which is fulfilled by a large class, ensuring a large intersection with these Cantor-like sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial search problem on regular lattice structures in integer number of dimensions d >= 2 has been studied extensively, using both coined and coinless quantum walks. The relativistic Dirac operator has been a crucial ingredient in these studies. Here, we investigate the spatial search problem on fractals of noninteger dimensions. Although the Dirac operator cannot be defined on a fractal, we construct the quantum walk on a fractal using the flip-flop operator that incorporates a Klein-Gordon mode. We find that the scaling behavior of the spatial search is determined by the spectral (and not the fractal) dimension. Our numerical results have been obtained on the well-known Sierpinski gaskets in two and three dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rainbow connection number of a connected graph is the minimum number of colors needed to color its edges, so that every pair of its vertices is connected by at least one path in which no two edges are colored the same. In this article we show that for every connected graph on n vertices with minimum degree delta, the rainbow connection number is upper bounded by 3n/(delta + 1) + 3. This solves an open problem from Schiermeyer (Combinatorial Algorithms, Springer, Berlin/Hiedelberg, 2009, pp. 432437), improving the previously best known bound of 20n/delta (J Graph Theory 63 (2010), 185191). This bound is tight up to additive factors by a construction mentioned in Caro et al. (Electr J Combin 15(R57) (2008), 1). As an intermediate step we obtain an upper bound of 3n/(delta + 1) - 2 on the size of a connected two-step dominating set in a connected graph of order n and minimum degree d. This bound is tight up to an additive constant of 2. This result may be of independent interest. We also show that for every connected graph G with minimum degree at least 2, the rainbow connection number, rc(G), is upper bounded by Gc(G) + 2, where Gc(G) is the connected domination number of G. Bounds of the form diameter(G)?rc(G)?diameter(G) + c, 1?c?4, for many special graph classes follow as easy corollaries from this result. This includes interval graphs, asteroidal triple-free graphs, circular arc graphs, threshold graphs, and chain graphs all with minimum degree delta at least 2 and connected. We also show that every bridge-less chordal graph G has rc(G)?3.radius(G). In most of these cases, we also demonstrate the tightness of the bounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Maximum Weight Independent Set (MWIS) problem on graphs with vertex weights asks for a set of pairwise nonadjacent vertices of maximum total weight. The complexity of the MWIS problem for hole-free graphs is unknown. In this paper, we first prove that the MWIS problem for (hole, dart, gem)-free graphs can be solved in O(n(3))-time. By using this result, we prove that the MWIS problem for (hole, dart)-free graphs can be solved in O(n(4))-time. Though the MWIS problem for (hole, dart, gem)-free graphs is used as a subroutine, we also give the best known time bound for the solvability of the MWIS problem in (hole, dart, gem)-free graphs. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider an inverse elasticity problem in which forces and displacements are known on the boundary and the material property distribution inside the body is to be found. In other words, we need to estimate the distribution of constitutive properties using the finite boundary data sets. Uniqueness of the solution to this problem is proved in the literature only under certain assumptions for a given complete Dirichlet-to-Neumann map. Another complication in the numerical solution of this problem is that the number of boundary data sets needed to establish uniqueness is not known even under the restricted cases where uniqueness is proved theoretically. In this paper, we present a numerical technique that can assess the sufficiency of given boundary data sets by computing the rank of a sensitivity matrix that arises in the Gauss-Newton method used to solve the problem. Numerical experiments are presented to illustrate the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multiport network approach is extended to analyze the behavior of microstrip fractal antennas. The capacitively fedmicrostrip square ring antenna has the side opposite to the feed arm replaced with a fractal Minkowski geometry. Dual frequency operation is achieved by suitably choosing the indentation of this fractal geometry. The width of the two sides adjacent to this is increased to further control the resonant characteristics and the ratio of the two resonance frequencies of this antenna. The impedance matrix for the multiport network model of this antenna is simplified exploiting self-similarity of the geometry with greater accuracy and reduced analysis time. Experimentally validated results confirm utility of the approach in analyzing the input characteristics of similar multi-frequency fractal microstrip antennas with other fractal geometries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we demonstrate the use of multi-port network modeling to analyze one such antenna with fractal shaped parts. Based on simulation and experimental studies, it has been demonstrated that model can accurately predict the input characteristics of antennas with Minkowski geometry replacing a side micro strip square ring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have benchmarked the maximum obtainable recognition accuracy on five publicly available standard word image data sets using semi-automated segmentation and a commercial OCR. These images have been cropped from camera captured scene images, born digital images (BDI) and street view images. Using the Matlab based tool developed by us, we have annotated at the pixel level more than 3600 word images from the five data sets. The word images binarized by the tool, as well as by our own midline analysis and propagation of segmentation (MAPS) algorithm are recognized using the trial version of Nuance Omnipage OCR and these two results are compared with the best reported in the literature. The benchmark word recognition rates obtained on ICDAR 2003, Sign evaluation, Street view, Born-digital and ICDAR 2011 data sets are 83.9%, 89.3%, 79.6%, 88.5% and 86.7%, respectively. The results obtained from MAPS binarized word images without the use of any lexicon are 64.5% and 71.7% for ICDAR 2003 and 2011 respectively, and these values are higher than the best reported values in the literature of 61.1% and 41.2%, respectively. MAPS results of 82.8% for BDI 2011 dataset matches the performance of the state of the art method based on power law transform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of extracting a signature representation of similar entities employing covariance descriptors. Covariance descriptors can efficiently represent objects and are robust to scale and pose changes. We posit that covariance descriptors corresponding to similar objects share a common geometrical structure which can be extracted through joint diagonalization. We term this diagonalizing matrix as the Covariance Profile (CP). CP can be used to measure the distance of a novel object to an object set through the diagonality measure. We demonstrate how CP can be employed on images as well as for videos, for applications such as face recognition and object-track clustering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patches with variants of fractal Minkowski curves as boundaries are used here to design a polarization dependent electromagnetic bandgap surface. Reflection phases of the proposed structure depends upon the polarization state of the incident wave and frequency. The phase difference between the x-polarized and y-polarized components of the reflected wave can be as high as 200 degrees and this is achieved without excessive increase in unit cell dimensions and vias. The performance of the surface is analyzed numerically using CST microwave studio. The potential applications of the surface are in polarization conversion surfaces, polarimetric radar calibration, and RCS reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new delaminated composite beam element is formulated for Timoshenko as well as Euler-Bernoulli beam models. Shape functions are derived from Timoshenko functions; this provides a unified formulation for slender to moderately deep beam analyses. The element is simple and easy to implement, results are on par with those from free mode delamination models. Katz fractal dimension method is applied on the mode shapes obtained from finite element models, to detect the delamination in the beam. The effect of finite element size on fractal dimension method of delamination detection is quantified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given a point set P and a class C of geometric objects, G(C)(P) is a geometric graph with vertex set P such that any two vertices p and q are adjacent if and only if there is some C is an element of C containing both p and q but no other points from P. We study G(del)(P) graphs where del is the class of downward equilateral triangles (i.e., equilateral triangles with one of their sides parallel to the x-axis and the corner opposite to this side below that side). For point sets in general position, these graphs have been shown to be equivalent to half-Theta(6) graphs and TD-Delaunay graphs. The main result in our paper is that for point sets P in general position, G(del)(P) always contains a matching of size at least vertical bar P vertical bar-1/3] and this bound is tight. We also give some structural properties of G(star)(P) graphs, where is the class which contains both upward and downward equilateral triangles. We show that for point sets in general position, the block cut point graph of G(star)(P) is simply a path. Through the equivalence of G(star)(P) graphs with Theta(6) graphs, we also derive that any Theta(6) graph can have at most 5n-11 edges, for point sets in general position. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we applied the integration methodology developed in the companion paper by Aires (2014) by using real satellite observations over the Mississippi Basin. The methodology provides basin-scale estimates of the four water budget components (precipitation P, evapotranspiration E, water storage change Delta S, and runoff R) in a two-step process: the Simple Weighting (SW) integration and a Postprocessing Filtering (PF) that imposes the water budget closure. A comparison with in situ observations of P and E demonstrated that PF improved the estimation of both components. A Closure Correction Model (CCM) has been derived from the integrated product (SW+PF) that allows to correct each observation data set independently, unlike the SW+PF method which requires simultaneous estimates of the four components. The CCM allows to standardize the various data sets for each component and highly decrease the budget residual (P - E - Delta S - R). As a direct application, the CCM was combined with the water budget equation to reconstruct missing values in any component. Results of a Monte Carlo experiment with synthetic gaps demonstrated the good performances of the method, except for the runoff data that has a variability of the same order of magnitude as the budget residual. Similarly, we proposed a reconstruction of Delta S between 1990 and 2002 where no Gravity Recovery and Climate Experiment data are available. Unlike most of the studies dealing with the water budget closure at the basin scale, only satellite observations and in situ runoff measurements are used. Consequently, the integrated data sets are model independent and can be used for model calibration or validation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractal dimension based damage detection method is investigated for a composite plate with random material properties. Composite material shows spatially varying random material properties because of complex manufacturing processes. Matrix cracks are considered as damage in the composite plate. Such cracks are often seen as the initial damage mechanism in composites under fatigue loading and also occur due to low velocity impact. Static deflection of the cantilevered composite plate with uniform loading is calculated using the finite element method. Damage detection is carried out based on sliding window fractal dimension operator using the static deflection. Two dimensional homogeneous Gaussian random field is generated using Karhunen-Loeve (KL) expansion to represent the spatial variation of composite material property. The robustness of fractal dimension based damage detection method is demonstrated considering the composite material properties as a two dimensional random field.