817 resultados para forensic psychiatry
Resumo:
We present the results of an initial investigation into the efficacy of using testate amoebae for the discrimination of soils from wet ground and puddles, as little attention has been given to these organisms in forensic science. The preservation of testate amoebae in these sediments is generally good, although test concentrations are low. Statistical analysis suggests that restate amoebae assemblages are somewhat spatially distinct and have potential to be used for soil discrimination. A case study is presented where mineralogical (X-ray diffraction) and restate amoebae analyses are used in conjunction to clarify the scene of crime in a 'cold case' murder enquiry. Testate amoebae were recovered from dried sediment residues on clothing 10 years after the murder. Despite these promising results, further experimental work is crucial to examine the spatial and temporal variation of amoebae assemblages in water films, wet ground and puddles before they can be added to the armoury of methods available to the forensic biologist.
Resumo:
The illegal burial of waste often occurs in locations where loose, transferable material is abundant, allowing covert pits to be dug or filled. The transfer of waste material onto suspects and their vehicles during loading, unloading, and burial is common, as is the case during other criminal activities such as the burial of murder victims. We use two case studies to show that the established principles of using geological materials in excluding or linking suspects can be applied to illegal waste disposal. In the first case, the layering of different geological materials on the tailgate of a container used to transport toxic waste demonstrated where the vehicle had been and denied the owner's alibi, associating him with an illegal dumpsite. In the second case, an unusual suite of minerals, recovered from a suspect's trousers, provided the intelligence that led environmental law enforcement officers to an illegal waste burial site.
Resumo:
Multilayer samples of white architectural paint potentially have very high evidential value in forensic casework, because the probability that two unrelated samples will have the same sequence of layers is extremely low. However, discrimination between the different layers using optical microscopy is often difficult or impossible. Here, lateral scanning Raman spectroscopy has been used to chemically map the cross-sections of multilayer white paint chips. It was found that the spectra did allow the different layers to be delineated on the basis of their spectral features. The boundaries between different layers were not as sharp as expected, with transitions occurring over length scales of > 20 µm, even with laser spot diameters <4 µm. However, the blurring of the boundaries was not so large as to prevent recording and identification of spectra from each of the layers in the samples. This method clearly provides excellent discrimination between different multilayer white paint samples and can readily be incorporated into existing procedures for examination of paint transfer evidence.
Resumo:
Geoscience methods are increasingly being utilised in criminal, environmental and humanitarian forensic investigations, and the use of such methods is supported by a growing body of experimental and theoretical research. Geoscience search techniques can complement traditional methodologies in the search for buried objects, including clandestine graves, weapons, explosives, drugs, illegal weapons, hazardous waste and vehicles. This paper details recent advances in search and detection methods, with case studies and reviews. Relevant examples are given, together with a generalised workflow for search and suggested detection technique(s) table. Forensic geoscience techniques are continuing to rapidly evolve to assist search investigators to detect hitherto difficult to locate forensic targets.
Resumo:
White household paints are commonly encountered as evidence in the forensic laboratory but they often cannot be readily distinguished by color alone so Fourier transform infrared (FT-IR) microscopy is used since it can sometimes discriminate between paints prepared with different organic resins. Here we report the first comparative study of FT-IR and Raman spectroscopy for forensic analysis of white paint. Both techniques allowed the 51 white paint samples in the study to be classified by inspection as either belonging to distinct groups or as unique samples. FT-IR gave five groups and four unique samples; Raman gave seven groups and six unique samples. The basis for this discrimination was the type of resin and/ or inorganic pigments/extenders present. Although this allowed approximately half of the white paints to be distinguished by inspection, the other half were all based on a similar resin and did not contain the distinctive modifiers/pigments and extenders that allowed the other samples to be identified. The experimental uncertainty in the relative band intensities measured using FT-IR was similar to the variation within this large group, so no further discrimination was possible. However, the variation in the Raman spectra was larger than the uncertainty, which allowed the large group to be divided into three subgroups and four distinct spectra, based on relative band intensities. The combination of increased discrimination and higher sample throughput means that the Raman method is superior to FT-IR for samples of this type. © 2005 Society for Applied Spectroscopy.
Resumo:
Geomorphology plays a critical role in two areas of geoforensics: searching the land for surface or buried objects and sampling or imaging rural scenes of crime and control locations as evidence. Most of the associated geoscience disciplines have substantial bodies of work dedicated to their relevance in forensic investigations, yet geomorphology (specifically landforms, their mapping and evolution, soils and relationship to geology and biogeography) have had no such exposure. This is strange considering how fundamental to legal enquiries the location of a crime and its evolution are, as this article will demonstrate. This work aims to redress the balance by showing how geomorphology is featured in one of the earliest works on forensic science methods, and has continued to play a role in the sociology, archaeology, criminalistics and geoforensics of crime. The application geomorphology has in military/humanitarian geography and environmental/engineering forensics is briefly discussed as these are also regularly reviewed in courts of law
Resumo:
The burial of objects (human remains, explosives, weapons) below or behind concrete, brick, plaster or tiling may be associated with serious crime and are difficult locations to search. These are quite common forensic search scenarios but little has been published on them to-date. Most documented discoveries are accidental or from suspect/witness testimony. The problem in locating such hidden objects means a random or chance-based approach is not advisable. A preliminary strategy is presented here, based on previous studies, augmented by primary research where new technology or applications are required. This blend allows a rudimentary search workflow, from remote desktop study, to non-destructive investigation through to recommendations as to how the above may inform excavation, demonstrated here with a case study from a homicide investigation. Published case studies on the search for human remains demonstrate the problems encountered when trying to find and recover sealed-in and sealed over locations. Established methods include desktop study, photography, geophysics and search dogs:these are integrated with new technology (LiDAR and laser scanning; photographic rectification; close quarter aerial imagery; ground-penetrating radar on walls and gamma-ray/neutron activation radiography) to propose this possible search strategy.