964 resultados para food drug interaction
Resumo:
As interações medicamentosas (IM) são consideradas um problema de saúde pública, pois podem causar resultados negativos à saúde dos usuários de medicamentos. Portanto o referido trabalho teve como objetivos: estimar a prevalência de internações hospitalares relacionadas a Potenciais IM (PIM); identificar os sinais e sintomas, e os fatores de risco para a hospitalização relacionados à PIM. Metodologia: Realizou-se estudo transversal na clínica geral de um hospital privado do interior de São Paulo (Brasil), em maio de 2006, com pacientes acima de 18 anos, com tempo de hospitalização superior a 24horas, sendo os mesmos entrevistados sobre os sintomas/motivos de internação e os medicamentos que haviam utilizado previamente à hospitalização. Calculou-se Odds-ratiopara identificar fatores de risco, sendo encontrado os seguintes resultados: 168 pacientes utilizando mais de um medicamento, dos quais 57 apresentaram PIM, sendo que em 17(10,1%), os sinais e sintomas da PIM possivelmente foram a causa da hospitalização. A maioria das manifestações clínicas das PIM foram sintomas cardiovasculares (44,3%), gastrintestinais (17,2%) e musculoesqueléticos (13,8%) e 10% das PIM foram consideradas potencialmente perigosas. Não foram detectados fatores de risco relacionados ao gênero, idade, uso de medicamentos de estreita faixa terapêutica para hospitalização por PIM. A polimedicação foi fator de risco para ocorrência de PIM (p < 0,0001) opostamente ao aumento da idade que revelou ser um fator de proteção (p=0,02). Conclusão: Se faz necessário seguimento farmacoterapêutico de pacientes que utilizam fármacos de estreita faixa terapêutica, pois estas substâncias estão frequentemente envolvidas em IM perigosas. Palavras-chave: Problema relacionado ao medicamento. Resultado negativo associado ao medicamento. Erros de medicação. Interações de medicamentos.
Resumo:
Due to the complexity and instability of clinical conditions of ICU patients, the drug therapy applied in this type of environment requires a combination of several prescribed drugs, which is a favorable condition for drug interaction, toxic synergism and possible iatrogenia. In the possible universe of ICU occurrences, this study aimed at identifying and evaluating the incidence of adverse events in drug therapy at the Intensive Care Therapy Service (SETI) in wards I and II. It is a cross-sectional, descriptive, prospective and quantitative study conducted from August to September, 2011 in the Intensive Care Service of the Botucatu School of Medicine University Hospital - UNESP. The population consisted of fifteen clinical nurses, including those in the Improvement and Volunteer Internship Programs, who contributed to the investigation after signing an informed consent form and according to approval by the Research Ethics Committee number 10711/CE - FMB. The data were entered on a form and analyzed. Results showed that, on average, 8.9% of events/day occurred, and the highest frequency was observed on August 04, 2011. 63% and 22% were respectively observed in the morning and afternoon shifts, and 15% in the night shift. 48% of these were due to administration time errors, followed by drug prescription and dispensation errors, with percentages of 22% and 18%, respectively. Antibiotics showed the highest frequency of adverse events - 18%, which was followed by 13% for anticoagulant, 11% for antiemetic and 10% for antiulcerative drugs. As regards the occurrence of adverse events related to hospitalization time, the highest frequency occurred in patients who were hospitalized for 10 days. Concerning the ratio between reported events and the number of items in the prescription, the highest frequency of events was related to prescriptions with 20 items... (Complete abstract click electronic access below)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To determine whether central α1 and α2-adrenergic mechanisms are involved in urinary sodium and potassium excretion and urine volume induced by angiotensin II (ANGII), these renal parameters were measured in volume-expanded Holtzman rats with cannulas implanted into lateral ventricle (LV) and lateral hypothalamus (LH). The injection of ANGII into LV in rats with volume expansion reduced the sodium, potassium and urine excretion in comparison to the control injections of isotonic saline, whereas prazosin (α1 antagonist) potentiated these effects. Clonidine (α2 agonist) and yohimbine (α2 antagonist) injected into LH previous to injection of ANGII into LV also abolished the inhibitory effect of ANGII. These results suggest that the discharge of central alpha-adrenergic receptors has dual inhibitory and excitatory effect on antinatriuretic, antikaliuretic and antidiuretic effect induced by central ANGII in volume-expanded rats. © 1995.
Resumo:
The aim of this study was to investigate the improvement of the aqueous solubility of carbamazepine by preparing microstructured ternary solid dispersions using polyoxylglycerides and colloidal silicon dioxide. Microstructured solid dispersions were obtained in a spray dryer. The influence of the spray drying conditions on the properties of the microparticles was investigated using a full 3(2) factorial design in which the factors studied were the silicon dioxide content and the air outlet temperature. The microparticles were thoroughly characterized in terms of yield, solubility, angle of repose, particle size, drug content, moisture content, sorption isotherms, morphology, thermal behavior, infrared spectroscopy and crystallinity. The dissolution rates of carbamazepine and of the microparticles in water were also determined. In general, the microstructured solid dispersions demonstrated good yield, adequate flow and moisture content (<3%), drug recovery (91.98 to 100.22%) and particle size (<142.90 mu m). Thermal and infrared analysis showed that there was no drug interaction during the process. On the other hand, the results of X-ray diffraction evidenced a partial polymorphic modification of carbamazepine. The solubility and dissolution rates of carbamazepine were remarkably improved. Therefore, the results confirm the high potential of the spray drying technique to obtain microstructured ternary solid dispersions. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
As shown in numerous studies, natural compounds may exert adverse effects, mainly when associated with some drugs. The hydroalcoholic extract of Mikania glomerata is the pharmaceutical form present in commercially available syrup used for the treatment of respiratory diseases in popular Brazilian medicine. The objective of the present investigation was (1) to evaluate the preventive effects of standardized hydroalcoholic extract of M. glomerata (MEx) against antitumoral drug doxorubicin (DXR)-induced micronucleated polychromatic erythrocytes (MNPCE) in a subchronic assay in mice, and (2) to determine the liver content of malondialdehyde (MDA) and the antioxidants glutathione (GSH) and vitamin E (VE). Male Swiss mice were treated for 30 d with MEx added to drinking water, combined or not with DXR (90 mg/kg body weight) injected intraperitoneally (ip) 24 h before analysis. The results demonstrated that MEx produced no genotoxic damage, but significantly increased the frequency of MNPCE induced by DXR, indicating a drug-drug interaction. This rise was not accompanied by lipid peroxidation or antioxidants level reduction, as measured by MDA, GSH, and VE. Despite the presence of coumarin (a known antioxidant), MEx may exert adverse effects probably in association with mutagenic compounds, although this effect on DNA damage did not involve oxidative stress.
Resumo:
The identification of molecular processes involved in cancer development and prognosis opened avenues for targeted therapies, which made treatment more tumor-specific and less toxic than conventional therapies. One important example is the epidermal growth factor receptor (EGFR) and EGFR-specific inhibitors (i.e. erlotinib). However, challenges such as drug resistance still remain in targeted therapies. Therefore, novel candidate compounds and new strategies are needed for improvement of therapy efficacy. Shikonin and its derivatives are cytotoxic constituents in traditional Chinese herbal medicine Zicao (Lithospermum erythrorhizin). In this study, we investigated the molecular mechanisms underlying the anti-cancer effects of shikonin and its derivatives in glioblastoma cells and leukemia cells. Most of shikonin derivatives showed strong cytotoxicity towards erlotinib-resistant glioblastoma cells, especially U87MG.ΔEGFR cells which overexpressed a deletion-activated EGFR (ΔEGFR). Moreover, shikonin and some derivatives worked synergistically with erlotinib in killing EGFR-overexpressing cells. Combination treatment with shikonin and erlotinib overcame the drug resistance of these cells to erlotinib. Western blotting analysis revealed that shikonin inhibited ΔEGFR phosphorylation and led to corresponding decreases in phosphorylation of EGFR downstream molecules. By means of Loewe additivity and Bliss independence drug interaction models, we found erlotinb and shikonin or its derivatives corporately suppressed ΔEGFR phosphorylation. We believed this to be a main mechanism responsible for their synergism in U87MG.ΔEGFR cells. In leukemia cells, which did not express EGFR, shikonin and its derivatives exhibited even greater cytotoxicity, suggesting the existence of other mechanisms. Microarray-based gene expression analysis uncovered the transcription factor c-MYC as the commonly deregulated molecule by shikonin and its derivatives. As validated by Western blotting analysis, DNA-binding assays and molecular docking, shikonin and its derivatives bound and inhibited c-MYC. Furthermore, the deregulation of ERK, JNK MAPK and AKT activity was closely associated with the reduction of c-MYC, indicating the involvement of these signaling molecules in shikonin-triggered c-MYC inactivation. In conclusion, the inhibition of EGFR signaling, synergism with erlotinib and targeting of c-MYC illustrate the multi-targeted feature of natural naphthoquinones such as shikonin and derivatives. This may open attractive possibilities for their use in a molecular targeted cancer therapy.
Resumo:
We sought to determine a potential interaction between statins and antiplatelet therapy with aspirin and clopidogrel. Previous laboratory studies have shown a possible drug-drug interaction of statins metabolized by cytochrome P450 3A4 and clopidogrel (prodrug metabolized by cytochrome P450 3A4), resulting in an impaired inhibitory effect of clopidogrel on platelet aggregation. However, conclusive prospective data assessing this potentially relevant interaction are lacking. In 73 patients, 23 with previous coronary stent thrombosis (ST) (ST group) and 50 without coronary ST (control group), platelet aggregation was measured 3 times in monthly intervals using light transmission aggregometry (adenosine diphosphate [ADP] and arachidonic acid induction). Measurements were carried out with aspirin monotherapy (100 mg/day), dual antiplatelet therapy with aspirin plus clopidogrel (75 mg/day), and additional treatment of 20 mg/day of atorvastatin or 40 mg/day of pravastatin. ADP (5 and 20 micromol)-induced platelet aggregation was significantly decreased with clopidogrel (p <0.001) but remained stable under additional treatment with atorvastatin or pravastatin in the 2 groups. Patients with previous ST showed a higher ADP-induced aggregation level than control subjects. This difference was not influenced by clopidogrel or statin treatment. In conclusion, patients with previous ST show a higher aggregation level than control subjects independent of statin treatment. Atorvastatin and pravastatin do not interfere with the antiaggregatory effect of aspirin and clopidogrel. In conclusion, drug-drug interaction between dual antiplatelet therapy and atorvastatin or pravastatin seems not to be associated with ST.
Resumo:
OBJECTIVE To report a case of severe myopathy associated with concomitant simvastatin and amiodarone therapy. CASE SUMMARY A 63-year-old white man with underlying insulin-dependent diabetes, recent coronary artery bypass surgery, and postoperative hemiplegia was treated with aspirin, metoprolol, furosemide, nitroglycerin, and simvastatin. Due to recurrent atrial fibrillation, oral anticoagulation with phenprocoumon and antiarrhythmic treatment with amiodarone were initiated. Four weeks after starting simvastatin 40 mg/day and 2 weeks after initiating amiodarone 1 g/day for 10 days, then 200 mg/day, he developed diffuse muscle pain with generalized muscular weakness. Laboratory investigations revealed a significant increase of creatine kinase (CK) peaking at 40 392 U/L. Due to a suspected drug interaction of simvastatin with amiodarone, both drugs were stopped. CK normalized over the following 8 days, and the patient made an uneventful recovery. An objective causality assessment revealed that the myopathy was probably related to simvastatin. DISCUSSION Myopathy is a rare but potentially severe adverse reaction associated with statins. Besides high statin doses, concomitant use of fibrates, defined comorbidities, and concurrent use of inhibitors of cytochrome P450 are important additional risk factors. This is especially relevant if statins predominantly metabolized by CYP3A4 are combined with inhibitors of this isoenzyme. Amiodarone is a potent inhibitor of several different CYP isoenzymes, including CYP3A4. CONCLUSIONS Avoiding the concomitant use of drugs with the potential to inhibit CYP-dependent metabolism (eg, amiodarone) or elimination of statins may decrease the risk of statin-associated myopathy. Alternatively, if drug therapy with a potent CYP inhibitor is inevitable, choosing a statin without relevant CYP metabolism (eg, pravastatin) should be considered.
Resumo:
We investigated whether the human growth hormone (HGH) response to catecholamine depletion differs between fully remitted patients with major depressive disorder and healthy control subjects. Fourteen unmedicated subjects with remitted major depressive disorder (RMDD) and 11 healthy control subjects underwent catecholamine depletion with oral α-methylparatyrosine (AMPT) in a randomized, placebo-controlled, double-blind crossover study. The main outcome measure was the serum level of HGH. The diagnosis × drug interaction for HGH serum concentration was significant (F₁,₂₃ = 7.66, P < 0.02). This interaction was attributable to the HGH level increasing after AMPT administration in the RMDD subjects but not in the healthy subjects. In the RMDD sample, the AMPT-induced increase in HGH concentration correlated inversely with AMPT-induced anxiety symptoms as assessed using the Beck Anxiety Inventory (r = -0.63, P < 0.02). There was a trend toward an inverse correlation of the AMPT-induced HGH concentration changes with AMPT-induced depressive symptoms as measured by the BDI (r = -0.53, P = 0.05). Following catecholamine depletion, the RMDD subjects were differentiated from control subjects by their HGH responses. This finding, together with the negative correlation between HGH response and AMPT-induced anxiety symptoms in RMDD subjects, suggests that AMPT administration results in a deeper nadir in central catecholaminergic transmission, as reflected by a greater disinhibition of HGH secretion, in RMDD subjects versus control subjects.
Resumo:
The role of channel inactivation in the molecular mechanism of calcium (Ca2+) channel block by phenylalkylamines (PAA) was analyzed by designing mutant Ca2+ channels that carry the high affinity determinants of the PAA receptor site [Hockerman, G. H., Johnson, B. D., Scheuer, T., and Catterall, W. A. (1995) J. Biol. Chem. 270, 22119–22122] but inactivate at different rates. Use-dependent block by PAAs was studied after expressing the mutant Ca2+ channels in Xenopus oocytes. Substitution of single putative pore-orientated amino acids in segment IIIS6 by alanine (F-1499-A, F-1500-A, F-1510-A, I-1514-A, and F-1515-A) gradually slowed channel inactivation and simultaneously reduced inhibition of barium currents (IBa) by (−)D600 upon depolarization by 100 ms steps at 0.1 Hz. This apparent reduction in drug sensitivity was only evident if test pulses were applied at a low frequency of 0.1 Hz and almost disappeared at the frequency of 1 Hz. (−)D600 slowed IBa recovery after maintained membrane depolarization (1–3 sec) to a comparable extent in all channel constructs. A drug-induced delay in the onset of IBa recovery from inactivation suggests that PAAs promote the transition to a deep inactivated channel conformation. These findings indicate that apparent PAA sensitivity of Ca2+ channels is not only defined by drug interaction with its receptor site but also crucially dependent on intrinsic gating properties of the channel molecule. A molecular model for PAA-Ca2+ channel interaction that accounts for the relationship between drug induced inactivation and channel block by PAA is proposed.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
No. 73-1100 issued in U. S. Insecticide and Fungicide Board, Service and regulatory announcements.