878 resultados para fontes alternativas de energia
Resumo:
O presente trabalho possui o intuito de analisar o panorama de energia eólica em âmbito mundial, dando um enfoque maior para seu cenário no Brasil. Primeiramente, estudando a história da energia eólica, seu advento, para fins de solução ao viés ambiental e à necessidade de diversificação da matriz energética mundial, com a finalidade de assumir os compromissos firmados no Protocolo de Kyoto, e, no caso do Brasil, da menor dependência do abastecimento externo
Resumo:
This paper is about a case study of using solar energy and wind energy in a farm. For this purpose were collected from the property, such as water consumption and amount of residents. So, we estimate how many conventional panels or PET bottle panels and boiler needed to supply the farm with warm water. It also calculates the amount of photovoltaic panels and the main accessories for converting solar energy into electrical energy. For the pumping of water using photovoltaic panels is dismissed and dimensioned to be a watermill
Resumo:
One of the majors concerns in society today is to decrease the environmental impact caused by human activities and natural resource exploration. From this need to be more careful with the environment arose, in the field of civil construction, the term sustainable building. Projects that use natural resources rationally, without ceasing to bring comfort and functionality for customers, are becoming more a reality. This paper presents the share of electric energy in a sustainable building, with the analysis of the available renewable energies used in a project, presentation of new constructive techniques and technologies that are constantly emerging to achieve greater energy efficiency, with an appropriate use of energy received, also a decrease of the energy consumed by some devices present in a residence or business
Resumo:
This work presents the development of the External Lighting Plan UNESP in the Itapeva Campus based LED and Solar Energy. Firstly it was made a collection of data from measurements of the local transit through the Google Earth 6 software and divide the local in sectors, and then perform an analysis of characteristics and age of the site. With these data it was possible to determine the average luminance the place, in30 lux. After these procedures was possible to determine the type of sets that would perform the role of bridge lighting the kit chosen was the 20/20 Sun LED manufacturer, since it contains the luminaire with the solar panel to the pole. Therefore we determined the number of poles for each sector, whichwas72in total and. After the determination of the location of each point lighting
Resumo:
The current world's need for clean and renewable energy sources aligned with the strong Brazilian growth looking to diversify its electric power generation sources, highly dependent on hydropower and petroleum encourages the implementation of technologies that reach this growth with diversity and cleaning. The sun energy source is considered inexhaustible and can meet the demand for energy through thermo solar plants to generate electricity. Several technologies are being studied and developed in the world and they can be used to generate electricity from the solar concentration, but in Brazil its use is still not found commercially. It is therefore essential to understand these technologies and develop knowledge about them so they can be implemented in Brazil. This work brings an overview of the thermo solar generation in Brazil, showing the different technologies and a thermodynamic simulation of one of such technologies considering a hybrid plant with complementary generation biomass, aiming at the generation of 1 MW in the Brazilian Northeast
Resumo:
The energy crisis has affected many countries. With the growing warning with the emission in the atmosphere and the lack of resources, the seek for sustainable sources for energy genaration have become even bigger. Some Countries, as Germany, started first in this journey, creating an incentive program to self-generation with renewable sources (wind, photovoltaics, biomass, etc.), giving priority for smaller plants. In Germany the program called EEG started in 2004. In Brazil, since the beggining of 2012, the self-generators did not know how they could be beneficted for self-generation, and self-generation didn't become commun in the country. However, with NR 482, of April 17th, 2012, the parameters were defined, and the self-generator could have a guideline. Therewith, studyies can be redirected for a better knowlegde of the conditions the self-generator will be sujected, in addition to Germany's case as reference to compare with Brazil's case. In this paper these studies are made, focused in wind power (wind turbines) and photovoltaic panels
Análise dos parâmetros técnicos e econômicos do aquecedor solar a vácuo, visando economia de energia
Resumo:
This work is about a development of a vacuum solar water heater. To accomplish this, some measurements were made, such as flow, water temperature and room temperature, relative humidity, solar power density and wind speed. It first presents a brief explanation about the global situation in relation to the accelerated use of exhaustible energy sources which can result in a breakdown of these for future generations. From this, is proposed to analyze this solar water heater with vacuum tubes during the winter season in Brazil southeastern region, under different environmental conditions. From such ideas became possible to prove through the experimental part, calculations and graphical results that technology and the performance of this device are technical and economically viable, according to the life cycle of this. It was also found that the average monthly production in a maximum heat stroke situation was 193,33kWh and minimum isolation was 57,76kWh. This reveals that this instrument should start to be examined more closely by all, as a way to reduce the use of electricity, which will protect the environment without reducing the comfort of people
Resumo:
Introduces technical, economic and environmentally competitive solutions in the energy market is a great challenge for society. This work examines each of these aspects considering the production of electrolytic hydrogen with energy from wind power, solar and hydropower, in order to ensure an overview of this energy carrier. Initially, an assessment of the technical aspects is made addressing existing electrolysers technologies, its main characteristics and differences. The geographical distribution of wind, solar and hydroelectric potential in Brazil is also mapped, and a configuration scheme of a hydrogen production system is discussed. Subsequently, the economic analysis calculates the cost of investment in the alkaline electrolyser of 60 Nm³ / h, similar to the Brazilian bus powered by hydrogen project, coordinated by EMTU. Since the main input of electrolysis is electricity, is analyzed the latest energy auctions of each primary source and it is calculated the cost of production of the wind, solar and hydropower hydrogen. Postponed to this, are investigated the intrinsic environmental impacts of electricity generation process, proposing a readjustment of an indicator of ecological efficiency for the production of hydrogen. Finally, the work discusses the concept of externalities and demonstrates how the incorporation of external costs can leverage the hydrogen economy. In short, it is evident that the wind and hydroelectric hydrogens are more promising compared to solar hydrogen, whether in the economic aspect, because it achieved lower costs, whether in the environmental aspect, because it reached the highest ecological efficiency
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
This paper presents the application and use of a methodology based on fuzzy theory and simulates its use in intelligent control of a hybrid system for generating electricity, using solar energy, photovoltaic and wind. When using a fuzzy control system, it reached the point of maximum generation of energy, thus shifting all energy generated from the alternative sources-solar photovoltaic and wind, cargo and / or batteries when its use not immediately. The model uses three variables used for entry, which are: wind speed, solar radiation and loading the bank of batteries. For output variable has to choose which of the batteries of the battery bank is charged. For the simulations of this work is used MATLAB software. In this environment mathematical computational are analyzed and simulated all mathematical modeling, rules and other variables in the system described fuzzy. This model can be used in a system of control of hybrid systems for generating energy, providing the best use of energy sources, sun and wind, so we can extract the maximum energy possible these alternative sources without any prejudice to the environment.
Resumo:
Atualmente um dos principais objetivos na área de pesquisa tecnológica é o desenvolvimento de soluções em favor do Meio Ambiente. Este trabalho tem por objetivo demonstrar a reutilização e consequentemente o aumento da vida útil de uma bateria Chumbo-Ácido, comumente instaladas em veículos automóveis, bem como beneficiar locais e usuários remotos onde o investimento na instalação de linhas de transmissão se torna inviável geográfica e economicamente, utilizando a luz solar como fonte de energia. No entanto a parte mais suscetível a falhas são as próprias baterias, justamente pela vida útil delas serem pequenas (em torno de 3 anos para a bateria automotiva) em comparação com o restante do sistema. Considerando uma unidade que já foi usada anteriormente, a possibilidade de falhas é ainda maior. A fim de diagnosticar e evitar que uma simples bateria possa prejudicar o funcionamento do sistema como um todo, o projeto considera a geração de energia elétrica por células fotovoltaicas e também contempla um sistema microcontrolado para leitura de dados utilizando o microcontrolador ATmega/Arduino, leitura de corrente por sensores de efeito hall da Allegro Systems, relés nas baterias para abertura e fechamento delas no circuito e um sistema de alerta para o usuário final de qual bateria está em falha e que precisa ser reparada e/ou trocada. Esse projeto foi montado na Ilha dos Arvoredos SP, distante da costa continental em aproximadamente 2,0km. Foram instaladas células solares e um banco de baterias, a fim de estudar o comportamento das baterias. O programa pôde diagnosticar e isolar uma das baterias que estava apresentando defeito, a fim de se evitar que a mesma viesse a prejudicar o sistema como um todo. Por conta da dificuldade de locomoção imposta pela geografia, foi escolhido o cartão SD para o armazenamento dos dados obtidos pelo Arduino. Posteriormente os dados foram compilados e analisados. A partir dos resultados apresentados podemos concluir que é possível usar baterias novas e baterias usadas em um mesmo sistema, de tal forma que se alguma das baterias apresentar uma falha o sistema por si só isolará a unidade.
Resumo:
Human development requires a broad balance between ecological, social and economic factors in order to ensure its own sustainability. In this sense, the search for new sources of energy generation, with low deployment and operation costs, which cause the least possible impact to the environment, has been the focus of attention of all society segments. To do so, the reduction in exploration of fossil fuels and the encouragement of using renewable energy resources for distributed generation have proved interesting alternatives to the expansion of the energy matrix of various countries in the world. In this sense, the wind energy has acquired an increasingly significant role, presenting increasing rates of power grid penetration and highlighting technological innovations such as the use of permanent magnet synchronous generators (PMSG). In Brazil, this fact has also been noted and, as a result, the impact of the inclusion of this source in the distribution and sub-transmission power grid has been a major concern of utilities and agents connected to Brazilian electrical sector. Thus, it is relevant the development of appropriate computational tools that allow detailed predictive studies about the dynamic behavior of wind farms, either operating with isolated load, either connected to the main grid, taking also into account the implementation of control strategies for active/reactive power generation and the keeping of adequate levels of voltage and frequency. This work fits in this context since it comprises mathematical and computational developments of a complete wind energy conversion system (WECS) endowed with PMSG using time domain techniques of Alternative Transients Program (ATP), which prides itself a recognized reputation by scientific and academic communities as well as by electricity professionals in Brazil and elsewhere. The modeling procedures performed allowed the elaboration of blocks representing each of the elements of a real WECS, comprising the primary source (the wind), the wind turbine, the PMSG, the frequency converter, the step up transformer, the load composition and the power grid equivalent. Special attention is also given to the implementation of wind turbine control techniques, mainly the pitch control responsible for keeping the generator under the maximum power operation point, and the vector theory that aims at adjusting the active/reactive power flow between the wind turbine and the power grid. Several simulations are performed to investigate the dynamic behavior of the wind farm when subjected to different operating conditions and/or on the occurrence of wind intensity variations. The results have shown the effectiveness of both mathematical and computational modeling developed for the wind turbine and the associated controls.