875 resultados para fluidised beds
Resumo:
An exceptional specimen of the Late Ordovician mollusc ‘Helminthochiton’ thraivensis Reed, from the Katian of the Lady Burn Starfish Beds, southwest Scotland, preserves gut contents that include nine pelmatozoan ossicles. These are interpreted as including two nodal and five intermodal columnals, and two radice ossicles from the attachment structure. The stem was cyclocyclic and heteromorphic, possibly N212. Radice ossicles were wider than the height of nodals, so radice scars must have encroached onto the latera of adjacent pluricolumnals. These features were compared with the 26 known pelmatozoan taxa from the Lady Burn Starfish Beds. Paracrinoids (one species) and glyptocystitid rhombiferans (six species) were discounted as prey because of their cemented attachment, and incorrect columnal morphology and lack of attachment, respectively. Of 19 species of crinoids, eight are discounted in which the column is pentagonal, tetragonal or unknown. Of the remaining eleven species, only the monobathrid camerate Macrostylocrinus cirrifer Ramsbottom satisfies all criteria for identification of the prey, including heteromorphy and radice scars encroaching adjacent internodals.
Resumo:
Fluidised hot melt granulation (FHMG) is a novel granulation technique for processing pharmaceutical powders. Several process and formulation parameters have been shown to significantly influence granulation characteristics within FHMG. In this study we have investigated the effect of the binder properties (binder particle size and binder viscosity) on agglomerate growth mechanisms within FHMG. Low-melting point co-polymers of polyoxyethylene–polyoxypropylene (Lutrol® F68 Poloxamer 188 and Lutrol® F127 Poloxamer 407) were used as meltable binders for FHMG, while standard ballotini beads were used as model fillers for this process. Standard sieve analysis was used to determine the size distribution of granules whereas we utilised fluorescence microscopy to investigate the distribution of binder within granules. This provided further insight into the growth mechanisms during FHMG. Binder particle size and viscosity were found to affect the onset time of granulation. Agglomerate growth achieved equilibrium within short time-scales and was shown to proceed by two competing processes, breakage of formed granules and re-agglomeration of fractured granules. Breakage was affected by the initial material properties (binder size and viscosity). When using binder with a small particle size (<250 µm), agglomerate growth via a distribution mechanism dominated. Increasing the binder particle size shifted the granulation mechanism such that agglomerates were formed predominantly via immersion. A critical ratio between binder diameter and filler has been calculated and this value may be useful for predicting or controlling granulation growth processes.
Resumo:
This study investigates a model system for potential pharmaceutical materials in fluidised bed processes. In particular, this study proposes a novel use of Raman spectroscopy, which allows in situ measurement of the composition of the material within the fluidised bed in three spatial dimensions and as a function of time. This is achieved by recording Raman spectra from specific volumes of space. The work shows that Raman spectroscopy can be used to provide 3D maps of the concentration and chemical structure of the particles in a fluidised bed within a relatively short (120 s) time window. At the most basic level the technique measures particle density via the intensity of the Raman spectra, however this could be used. More importantly the data are also rich in spectroscopic information on the chemical structure of the fluidised particles which is useful either for monitoring a given granulation process or more generally for the analysis of the dynamics of the airflow if the data were incorporated into an appropriate model. The technique has the potential to give detailed in situ information on how the structure and composition of the granules/powders within the fluidised bed (dryer or granulator) vary with the position and evolve with time. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports the detailed description and validation of a fully automated, computer controlled analytical method to spatially probe the gas composition and thermal characteristics in packed bed systems. This method has been designed to limit the invasiveness of the probe, a characteristic assessed using CFD. The thermocouple is aligned with the sampling holes to enable simultaneous recording of the gas composition and temperature profiles. This analysis technique has been validated by studying CO oxidation over a 1% Pt/Al2O3 catalyst. The resultant profiles have been compared with a micro-kinetic model, to further assess the strength of the technique.
Resumo:
The overall aim of the project was to study the influence of process variables on the distribution of a model active pharmaceutical ingredient (API) during fluidised melt granulation of pharmaceutical granules with a view of optimising product characteristics. Granules were produced using common pharmaceutical excipients; lactose monohydrate using poly ethylene glycol (PEG1500) as a meltable binder. Methylene blue was used as a model API. Empirical models relating the process variables to the granules properties such as granule mean size, product homogeneity and granule strength were developed using the design of experiment approach. Fluidising air velocity and fluidising air temperature were shown to strongly influence the product properties. Optimisation studies showed that strong granules with homogeneous distribution of the active ingredient can be produced at high fluidising air velocity and at high fluidising air temperatures.
Resumo:
The characteristics of hydraulic jumps were investigated for three shapes of artificial apparent corrugated beds in a horizontal rectangular flume. Rectangular, triangular, and circular-shaped tire waste corrugated beds were used. Froude number ranged from 2.75 to 4.25. The experimental observations included water surface profiles, bed shear stress, and the hydraulic jump length. Results showed that the shape of the corrugation had relatively insignificant effects on hydraulic jump properties for small Froude numbers. The rectangular, triangular, and circular-shaped corrugated beds reduced the hydraulic jump length by up to 7, 10, and 11%, respectively. The corrugated bed also reduced the tailwater depth by up to 11.5% compared with the smooth bed. The apparent conditions of corrugated bed reduced the hydraulic jump relative length and height by about 0.4 and 0.5, respectively. The circular-shaped tire waste was found to be more effective in reducing the length and depth of the hydraulic jump.
Resumo:
With advancements in the development of visible light responsive catalysts for H2 production frequently being reported, photocatalytic water splitting has become an attractive method as a potential ‘solar fuel generator’. The development of novel photo reactors which can enhance the potential of such catalyst, however, is rarely reported. This is particularly important as many reactor configurations are mass transport limited, which in term limits the efficiency of more effective photocatalysts in larger scale applications. This paper describes the performance of a novel fluidised photo reactor for the production of H2 over two catalysts under UV-Visible light and natural solar illumination. Catalysts Pt-C3N4 and NaTaO3.La were dispersed in the reactor and the rate of H2 was determined by GC-TCD analysis of the gas headspace. The unit was an annular reactor constructed from stainless steel 316 and quartz glass with a propeller located in the base to control fluidisation of powder catalysts. Reactor properties such as propeller rotational speed were found to enhance the photo activity of the system through the elimination of mass transport limitations and increasing light penetration. The optimum conditions for H2 evolution were found to be a propeller rotational speed of 1035 rpm and 144 W of UV-Visible irradiation, which produced a rate of 89 µmol h-1 g-1 over Pt-C3N4. Solar irradiation was provided by the George Ellery Hale Solar Telescope, located at the California Institute of Technology.