964 resultados para film stack design
Resumo:
In this work, we address the issue of modeling squeeze film damping in nontrivial geometries that are not amenable to analytical solutions. The design and analysis of microelectromechanical systems (MEMS) resonators, especially those that use platelike two-dimensional structures, require structural dynamic response over the entire range of frequencies of interest. This response calculation typically involves the analysis of squeeze film effects and acoustic radiation losses. The acoustic analysis of vibrating plates is a very well understood problem that is routinely carried out using the equivalent electrical circuits that employ lumped parameters (LP) for acoustic impedance. Here, we present a method to use the same circuit with the same elements to account for the squeeze film effects as well by establishing an equivalence between the parameters of the two domains through a rescaled equivalent relationship between the acoustic impedance and the squeeze film impedance. Our analysis is based on a simple observation that the squeeze film impedance rescaled by a factor of jx, where x is the frequency of oscillation, qualitatively mimics the acoustic impedance over a large frequency range. We present a method to curvefit the numerically simulated stiffness and damping coefficients which are obtained using finite element analysis (FEA) analysis. A significant advantage of the proposed method is that it is applicable to any trivial/nontrivial geometry. It requires very limited finite element method (FEM) runs within the frequency range of interest, hence reducing the computational cost, yet modeling the behavior in the entire range accurately. We demonstrate the method using one trivial and one nontrivial geometry.
Resumo:
Electrical bias and light stressing followed by natural recovery of amorphous hafnium-indium-zinc-oxide (HIZO) thin film transistors with a silicon oxide/nitride dielectric stack reveals defect density changes, charge trapping and persistent photoconductivity (PPC). In the absence of light, the polarity of bias stress controls the magnitude and direction of the threshold voltage shift (Δ VT), while under light stress, VT consistently shifts negatively. In all cases, there was no significant change in field-effect mobility. Light stress gives rise to a PPC with wavelength-dependent recovery on time scale of days. We observe that the PPC becomes more pronounced at shorter wavelengths. © 2010 American Institute of Physics.
Resumo:
Peel test measurements and inverse analysis to determine the interfacial mechanical parameters for the metal film/ceramic system are performed, considering that there exist an epoxy interface layer between film and ceramic. In the present investigation, Al films with a series of thicknesses between 20 and 250 mu m and three peel angles of 90, 135 and 180 degrees are considered. A finite element model with the cohesive zone elements is used to simulate the peel test process. The finite element results are taken as the training data of a neural network in the inverse analysis. The interfacial cohesive energy and the separation strength can be determined based on the inverse analysis and peel experimental result. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A preliminary experiment was carried out to validate the feasibility of the method of impact by a front-end-coated bullet to evaluate the interface adhesion between film and substrate. The theoretical description of the initiation, propagation and evolution of the stress pulse during impact was generalized and formulized. The effects of the crucial parameters on the interface stress were further investigated with FEM. The results found the promising prospect of the application of such a method and provided useful guidance for experimental design.
Resumo:
This work describes the design and synthesis of a true, heterogeneous, asymmetric catalyst. The catalyst consists of a thin film that resides on a high-surface- area hydrophilic solid and is composed of a chiral, hydrophilic organometallic complex dissolved in ethylene glycol. Reactions of prochiral organic reactants take place predominantly at the ethylene glycol-bulk organic interface.
The synthesis of this new heterogeneous catalyst is accomplished in a series of designed steps. A novel, water-soluble, tetrasulfonated 2,2'-bis (diphenylphosphino)-1,1'-binaphthyl (BINAP-4S0_3Na) is synthesized by direct sulfonation of 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP). The rhodium (I) complex of BINAP-4SO_3Na is prepared and is shown to be the first homogeneous catalyst to perform asymmetric reductions of prochiral 2-acetamidoacrylic acids in neat water with enantioselectivities as high as those obtained in non-aqueous solvents. The ruthenium (II) complex, [Ru(BINAP-4SO_3Na)(benzene)Cl]Cl is also synthesized and exhibits a broader substrate specificity as well as higher enantioselectivities for the homogeneous asymmetric reduction of prochiral 2-acylamino acid precursors in water. Aquation of the ruthenium-chloro bond in water is found to be detrimental to the enantioselectivity with some substrates. Replacement of water by ethylene glycol results in the same high e.e's as those found in neat methanol. The ruthenium complex is impregnated onto a controlled pore-size glass CPG-240 by the incipient wetness technique. Anhydrous ethylene glycol is used as the immobilizing agent in this heterogeneous catalyst, and a non-polar 1:1 mixture of chloroform and cyclohexane is employed as the organic phase.
Asymmetric reduction of 2-(6'-methoxy-2'-naphthyl)acrylic acid to the non-steroidal anti-inflammatory agent, naproxen, is accomplished with this heterogeneous catalyst at a third of the rate observed in homogeneous solution with an e.e. of 96% at a reaction temperature of 3°C and 1,400 psig of hydrogen. No leaching of the ruthenium complex into the bulk organic phase is found at a detection limit of 32 ppb. Recycling of the catalyst is possible without any loss in enantioselectivity. Long-term stability of this new heterogeneous catalyst is proven by a self-assembly test. That is, under the reaction conditions, the individual components of the present catalytic system self-assemble into the supported-catalyst configuration.
The strategies outlined here for the design and synthesis of this new heterogeneous catalyst are general, and can hopefully be applied to the development of other heterogeneous, asymmetric catalysts.
Resumo:
Future fossil fuel scarcity and environmental degradation have demonstrated the need for renewable, low-carbon sources of energy to power an increasingly industrialized world. Solar energy with its infinite supply makes it an extraordinary resource that should not go unused. However with current materials, adoption is limited by cost and so a paradigm shift must occur to get everyone on the same page embracing solar technology. Cuprous Oxide (Cu2O) is a promising earth abundant material that can be a great alternative to traditional thin-film photovoltaic materials like CIGS, CdTe, etc. We have prepared Cu2O bulk substrates by the thermal oxidation of copper foils as well Cu2O thin films deposited via plasma-assisted Molecular Beam Epitaxy. From preliminary Hall measurements it was determined that Cu2O would need to be doped extrinsically. This was further confirmed by simulations of ZnO/Cu2O heterojunctions. A cyclic interdependence between, defect concentration, minority carrier lifetime, film thickness, and carrier concentration manifests itself a primary reason for why efficiencies greater than 4% has yet to be realized. Our growth methodology for our thin-film heterostructures allow precise control of the number of defects that incorporate into our film during both equilibrium and nonequilibrium growth. We also report process flow/device design/fabrication techniques in order to create a device. A typical device without any optimizations exhibited open-circuit voltages Voc, values in excess 500mV; nearly 18% greater than previous solid state devices.
Resumo:
The prospect of terawatt-scale electricity generation using a photovoltaic (PV) device places strict requirements on the active semiconductor optoelectronic properties and elemental abundance. After reviewing the constraints placed on an "earth-abundant" solar absorber, we find zinc phosphide (α-Zn3P2) to be an ideal candidate. In addition to its near-optimal direct band gap of 1.5 eV, high visible-light absorption coefficient (>104 cm-1), and long minority-carrier diffusion length (>5 μm), Zn3P2 is composed of abundant Zn and P elements and has excellent physical properties for scalable thin-film deposition. However, to date, a Zn3P2 device of sufficient efficiency for commercial applications has not been demonstrated. Record efficiencies of 6.0% for multicrystalline and 4.3% for thin-film cells have been reported, respectively. Performance has been limited by the intrinsic p-type conductivity of Zn3P2 which restricts us to Schottky and heterojunction device designs. Due to our poor understanding of Zn3P2 interfaces, an ideal heterojunction partner has not yet been found.
The goal of this thesis is to explore the upper limit of solar conversion efficiency achievable with a Zn3P2 absorber through the design of an optimal heterojunction PV device. To do so, we investigate three key aspects of material growth, interface energetics, and device design. First, the growth of Zn3P2 on GaAs(001) is studied using compound-source molecular-beam epitaxy (MBE). We successfully demonstrate the pseudomorphic growth of Zn3P2 epilayers of controlled orientation and optoelectronic properties. Next, the energy-band alignments of epitaxial Zn3P2 and II-VI and III-V semiconductor interfaces are measured via high-resolution x-ray photoelectron spectroscopy in order to determine the most appropriate heterojunction partner. From this work, we identify ZnSe as a nearly ideal n-type emitter for a Zn3P2 PV device. Finally, various II-VI/Zn3P2 heterojunction solar cells designs are fabricated, including substrate and superstrate architectures, and evaluated based on their solar conversion efficiency.
Resumo:
While concentrator photovoltaic cells have shown significant improvements in efficiency in the past ten years, once these cells are integrated into concentrating optics, connected to a power conditioning system and deployed in the field, the overall module efficiency drops to only 34 to 36%. This efficiency is impressive compared to conventional flat plate modules, but it is far short of the theoretical limits for solar energy conversion. Designing a system capable of achieving ultra high efficiency of 50% or greater cannot be achieved by refinement and iteration of current design approaches.
This thesis takes a systems approach to designing a photovoltaic system capable of 50% efficient performance using conventional diode-based solar cells. The effort began with an exploration of the limiting efficiency of spectrum splitting ensembles with 2 to 20 sub cells in different electrical configurations. Incorporating realistic non-ideal performance with the computationally simple detailed balance approach resulted in practical limits that are useful to identify specific cell performance requirements. This effort quantified the relative benefit of additional cells and concentration for system efficiency, which will help in designing practical optical systems.
Efforts to improve the quality of the solar cells themselves focused on the development of tunable lattice constant epitaxial templates. Initially intended to enable lattice matched multijunction solar cells, these templates would enable increased flexibility in band gap selection for spectrum splitting ensembles and enhanced radiative quality relative to metamorphic growth. The III-V material family is commonly used for multijunction solar cells both for its high radiative quality and for the ease of integrating multiple band gaps into one monolithic growth. The band gap flexibility is limited by the lattice constant of available growth templates. The virtual substrate consists of a thin III-V film with the desired lattice constant. The film is grown strained on an available wafer substrate, but the thickness is below the dislocation nucleation threshold. By removing the film from the growth substrate, allowing the strain to relax elastically, and bonding it to a supportive handle, a template with the desired lattice constant is formed. Experimental efforts towards this structure and initial proof of concept are presented.
Cells with high radiative quality present the opportunity to recover a large amount of their radiative losses if they are incorporated in an ensemble that couples emission from one cell to another. This effect is well known, but has been explored previously in the context of sub cells that independently operate at their maximum power point. This analysis explicitly accounts for the system interaction and identifies ways to enhance overall performance by operating some cells in an ensemble at voltages that reduce the power converted in the individual cell. Series connected multijunctions, which by their nature facilitate strong optical coupling between sub-cells, are reoptimized with substantial performance benefit.
Photovoltaic efficiency is usually measured relative to a standard incident spectrum to allow comparison between systems. Deployed in the field systems may differ in energy production due to sensitivity to changes in the spectrum. The series connection constraint in particular causes system efficiency to decrease as the incident spectrum deviates from the standard spectral composition. This thesis performs a case study comparing performance of systems over a year at a particular location to identify the energy production penalty caused by series connection relative to independent electrical connection.
Resumo:
The optical constants of two cyanine dye films that we prepared were measured with a RAP-1-type (RAP is rotating analyzer and polarizer) spectroscopic ellipsometer. Toward making a simplified model for the wafers of a recordable compact disk (CD-R), we give their optimization designs developed with the cyanine dye films. in addition, the dynamic storage performances of two sample disks were tested by our dynamic storage testing system. Measurement results of the sample disks were obtained to test and verify our film designs. (C) 2000 Optical Society of America. OCIS codes: 160.4890, 160.4760, 210.4810.
Resumo:
The refractive indices of crystalline phase-change films are usually obtained by thermal-induced crystallization. However, this is not accurate, because the crystallization of phase-change film in rewritable optical disks is laser induced. In this study, we use the initializer to crystallize the phase-change films. The dependence of the refractive index n and the extinction coefficient k of the phase-change films on the initialization conditions are studied. Remarkable changes of the refractive indices (especially k) are found when the initialization laser power density is 6.63 mW/mum(2) and the initialization velocity is 4.0 m/s. At the same time, the structure changes of the phase-change films are also studied. This dependence is explained by the structure change of the films. These results are significant in improving the accuracy of optical design and the thermal simulation of phase-change optical disks, as well as in the study of phase-change optical disks at shorter wavelengths. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We describe a nonpolarizing filter design at oblique incidence and a polarizing filter design at normal incidence that use a uniaxially anisotropic layer. The phase thicknesses and the optical admittances of 14 the layers are compensated for by the birefringent properties of a thin film at oblique incidence. This concept can be applied to the design of nonpolarizing bandpass and edge filters at oblique incidence and of polarizing beam splitters at normal incidence. Besides, the dependence of narrow-bandpass filters on normal incidence is discussed. (c) 2005 Optical Society of America.
Resumo:
A novel design for dielectric anisotropic mirrors with birefringent thin films for normal incidence is presented. This mirror consists of a stack of quarter-wave biaxial layers. The biaxial anisotropic layers can be fabricated by oblique deposition. The reflectance is different for two linear polarizations of light incidence on the mirrors. As a numerical example, the design is carried out on glass with TiO2 and ZrO2. These thin films could be applied to anisotropic reflective devices for lasers.
Resumo:
以薄膜光学的干涉理论和衍射光学的傅里叶模式理论为基础,给出了0.8μm飞秒激光器用多层介质膜脉宽压缩光栅的理论设计;设计采用H3L(HL)^9H0.5L2.4H的多层介质膜为基底,当刻蚀后表面浮雕结构的占宽比为0.35,线密度为1480线/mm,槽深为0.2μm,顶层HfO2的剩余厚度为0.15μm时,对于Littrow角度(36.7°)和TE波模式入射的衍射光栅其-1级衍射效率达到95%以上.
Resumo:
We demonstrate that the surface relief guided-mode resonant gratings with specified central wavelength and FWHM in the visible wavelength range can be designed by analyzing the complex poles of Reflectance and transmission coefficient matrix algorithm (RTCM), a variant of S-matrix propagation algorithm proposed for calculation of multilayer gratings. In addition, FWHM is computed with couple-mode (CM) theory of resonant gratings which is firstly extended by Norton et al. in calculation of waveguide grating. Furthermore, the side band reflections of the filter can be reduced to less than 5% in the visible wavelength with the antireflection (AR) design technique widely used in the thin-film field. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
导模共振滤波器由于其高峰值反射率,低旁带反射,窄带以及带宽可控等优良特性引起了人们极大的关注,采用亚波长光栅的导模共振效应可以实现传统基于高低折射率介质的多层膜滤波器所无法实现的特殊功能,在弱调制模式下,其共振带宽可以被压缩到零点几纳米,但是由于介质表面和空气层的菲涅耳反射,使得偏离或者远离共振区时的反射率偏高,根据等效介质理论,亚波长光栅在远离共振区可以被看为均匀的薄膜,本文通过对导模共振光栅进行单层、双层以及三层抗反射设计,有效的降低了导模共振光栅的旁带反射率,从而在可见光波段获得了性能优良的共振滤波器.