954 resultados para field-theory
Resumo:
The timed-initiation paradigm developed by Ghez and colleagues (1997) has revealed two modes of motor planning: continuous and discrete. Continuous responding occurs when targets are separated by less than 60° of spatial angle, and discrete responding occurs when targets are separated by greater than 60°. Although these two modes are thought to reflect the operation of separable strategic planning systems, a new theory of movement preparation, the Dynamic Field Theory, suggests that two modes emerge flexibly from the same system. Experiment 1 replicated continuous and discrete performance using a task modified to allow for a critical test of the single system view. In Experiment 2, participants were allowed to correct their movements following movement initiation (the standard task does not allow corrections). Results showed continuous planning performance at large and small target separations. These results are consistent with the proposal that the two modes reflect the time-dependent “preshaping” of a single planning system.
Generalizing the dynamic field theory of spatial cognition across real and developmental time scales
Resumo:
Within cognitive neuroscience, computational models are designed to provide insights into the organization of behavior while adhering to neural principles. These models should provide sufficient specificity to generate novel predictions while maintaining the generality needed to capture behavior across tasks and/or time scales. This paper presents one such model, the Dynamic Field Theory (DFT) of spatial cognition, showing new simulations that provide a demonstration proof that the theory generalizes across developmental changes in performance in four tasks—the Piagetian A-not-B task, a sandbox version of the A-not-B task, a canonical spatial recall task, and a position discrimination task. Model simulations demonstrate that the DFT can accomplish both specificity—generating novel, testable predictions—and generality—spanning multiple tasks across development with a relatively simple developmental hypothesis. Critically, the DFT achieves generality across tasks and time scales with no modification to its basic structure and with a strong commitment to neural principles. The only change necessary to capture development in the model was an increase in the precision of the tuning of receptive fields as well as an increase in the precision of local excitatory interactions among neurons in the model. These small quantitative changes were sufficient to move the model through a set of quantitative and qualitative behavioral changes that span the age range from 8 months to 6 years and into adulthood. We conclude by considering how the DFT is positioned in the literature, the challenges on the horizon for our framework, and how a dynamic field approach can yield new insights into development from a computational cognitive neuroscience perspective.
Resumo:
This study tested a dynamic field theory (DFT) of spatial working memory and an associated spatial precision hypothesis (SPH). Between 3 and 6 years of age, there is a qualitative shift in how children use reference axes to remember locations: 3-year-olds’ spatial recall responses are biased toward reference axes after short memory delays, whereas 6-year-olds’ responses are biased away from reference axes. According to the DFT and the SPH, quantitative improvements over development in the precision of excitatory and inhibitory working memory processes lead to this qualitative shift. Simulations of the DFT in Experiment 1 predict that improvements in precision should cause the spatial range of targets attracted toward a reference axis to narrow gradually over development, with repulsion emerging and gradually increasing until responses to most targets show biases away from the axis. Results from Experiment 2 with 3- to 5-year-olds support these predictions. Simulations of the DFT in Experiment 3 quantitatively fit the empirical results and offer insights into the neural processes underlying this developmental change.
Resumo:
This is a short nontechnical introduction to applications of the Quantum Field Theory methods to graphene. We derive the Dirac model from the tight binding model and describe calculations of the polarization operator (conductivity). Later on, we use this quantity to describe the Quantum Hall Effect, light absorption by graphene, the Faraday effect, and the Casimir interaction.
Resumo:
We study, in a d-dimensional space-time, the nonanalyticity of the thermal free energy in the scalar phi(4) theory as well as in QED. We find that the infrared divergent contributions induce, when d is even, a nonanalyticity in the coupling alpha of the form (alpha)((d-1)/2) whereas when d is odd the nonanalyticity is only logarithmic.
Resumo:
We discuss two Lagrangian interacting dark energy models in the context of the holographic principle. The potentials of the interacting fields are constructed. The models are compared with CMB distance information, baryonic acoustic oscillations, lookback time and the Constitution supernovae sample. For both models, the results are consistent with a nonvanishing interaction in the dark sector of the Universe and the sign of coupling is consistent with dark energy decaying into dark matter, alleviating the coincidence problem-with more than 3 standard deviations of confidence for one of them. However, this is because the noninteracting holographic dark energy model is a bad fit to the combination of data sets used in this work as compared to the cosmological constant with cold dark matter model, so that one needs to introduce the interaction in order to improve this model.
Resumo:
Using the elements of the so-called KBc gamma subalgebra, we study a class of analytic solutions depending on a single function F(K) in the modified cubic superstring field theory. We compute the energy associated to these solutions and show that the result can be expressed in terms of a contour integral. For a particular choice of the function F(K), we show that the energy is given by integer multiples of a single D-brane tension.
Resumo:
The research work concerns the analysis of the foundations of Quantum Field Theory carried out from an educational perspective. The whole research has been driven by two questions: • How the concept of object changes when moving from classical to contemporary physics? • How are the concepts of field and interaction shaped and conceptualized within contemporary physics? What makes quantum field and interaction similar to and what makes them different from the classical ones? The whole work has been developed through several studies: 1. A study aimed to analyze the formal and conceptual structures characterizing the description of the continuous systems that remain invariant in the transition from classical to contemporary physics. 2. A study aimed to analyze the changes in the meanings of the concepts of field and interaction in the transition to quantum field theory. 3. A detailed study of the Klein-Gordon equation aimed at analyzing, in a case considered emblematic, some interpretative (conceptual and didactical) problems in the concept of field that the university textbooks do not address explicitly. 4. A study concerning the application of the “Discipline-Culture” Model elaborated by I. Galili to the analysis of the Klein-Gordon equation, in order to reconstruct the meanings of the equation from a cultural perspective. 5. A critical analysis, in the light of the results of the studies mentioned above, of the existing proposals for teaching basic concepts of Quantum Field Theory and particle physics at the secondary school level or in introductory physics university courses.
Resumo:
In questo lavoro abbiamo studiato la presenza di correzioni, dette unusuali, agli stati eccitati delle teorie conformi. Inizialmente abbiamo brevemente descritto l'approccio di Calabrese e Cardy all'entropia di entanglement nei sistemi unidimensionali al punto critico. Questo approccio permette di ottenere la famosa ed universale divergenza logaritmica di questa quantità. Oltre a questo andamento logaritmico son presenti correzioni, che dipendono dalla geometria su cui si basa l'approccio di Calabrese e Cardy, il cui particolare scaling è noto ed è stato osservato in moltissimi lavori in letteratura. Questo scaling è dovuto alla rottura locale della simmetria conforme, che è una conseguenza della criticità del sistema, intorno a particolari punti detti branch points usati nell'approccio di Calabrese e Cardy. In questo lavoro abbiamo dimostrato che le correzioni all'entropia di entanglement degli stati eccitati della teoria conforme, che può anch'essa essere calcolata tramite l'approccio di Calabrese e Cardy, hanno lo stesso scaling di quelle osservate negli stati fondamentali. I nostri risultati teorici sono stati poi perfettamente confermati dei calcoli numerici che abbiamo eseguito sugli stati eccitati del modello XX. Sono stati inoltre usati risultati già noti per lo stato fondamentale del medesimo modello per poter studiare la forma delle correzioni dei suoi stati eccitati. Questo studio ha portato alla conclusione che la forma delle correzioni nei due differenti casi è la medesima a meno di una funzione universale.
Resumo:
In questa tesi abbiamo studiato la quantizzazione di una teoria di gauge di forme differenziali su spazi complessi dotati di una metrica di Kaehler. La particolarità di queste teorie risiede nel fatto che esse presentano invarianze di gauge riducibili, in altre parole non indipendenti tra loro. L'invarianza sotto trasformazioni di gauge rappresenta uno dei pilastri della moderna comprensione del mondo fisico. La caratteristica principale di tali teorie è che non tutte le variabili sono effettivamente presenti nella dinamica e alcune risultano essere ausiliarie. Il motivo per cui si preferisce adottare questo punto di vista è spesso il fatto che tali teorie risultano essere manifestamente covarianti sotto importanti gruppi di simmetria come il gruppo di Lorentz. Uno dei metodi più usati nella quantizzazione delle teorie di campo con simmetrie di gauge, richiede l'introduzione di campi non fisici detti ghosts e di una simmetria globale e fermionica che sostituisce l'iniziale invarianza locale di gauge, la simmetria BRST. Nella presente tesi abbiamo scelto di utilizzare uno dei più moderni formalismi per il trattamento delle teorie di gauge: il formalismo BRST Lagrangiano di Batalin-Vilkovisky. Questo metodo prevede l'introduzione di ghosts per ogni grado di riducibilità delle trasformazioni di gauge e di opportuni “antifields" associati a ogni campo precedentemente introdotto. Questo formalismo ci ha permesso di arrivare direttamente a una completa formulazione in termini di path integral della teoria quantistica delle (p,0)-forme. In particolare esso permette di dedurre correttamente la struttura dei ghost della teoria e la simmetria BRST associata. Per ottenere questa struttura è richiesta necessariamente una procedura di gauge fixing per eliminare completamente l'invarianza sotto trasformazioni di gauge. Tale procedura prevede l'eliminazione degli antifields in favore dei campi originali e dei ghosts e permette di implementare, direttamente nel path integral condizioni di gauge fixing covarianti necessari per definire correttamente i propagatori della teoria. Nell'ultima parte abbiamo presentato un’espansione dell’azione efficace (euclidea) che permette di studiare le divergenze della teoria. In particolare abbiamo calcolato i primi coefficienti di tale espansione (coefficienti di Seeley-DeWitt) tramite la tecnica dell'heat kernel. Questo calcolo ha tenuto conto dell'eventuale accoppiamento a una metrica di background cosi come di un possibile ulteriore accoppiamento alla traccia della connessione associata alla metrica.
Resumo:
In this thesis we will investigate some properties of one-dimensional quantum systems. From a theoretical point of view quantum models in one dimension are particularly interesting because they are strongly interacting, since particles cannot avoid each other in their motion, and you we can never ignore collisions. Yet, integrable models often generate new and non-trivial solutions, which could not be found perturbatively. In this dissertation we shall focus on two important aspects of integrable one- dimensional models: Their entanglement properties at equilibrium and their dynamical correlators after a quantum quench. The first part of the thesis will be therefore devoted to the study of the entanglement entropy in one- dimensional integrable systems, with a special focus on the XYZ spin-1/2 chain, which, in addition to being integrable, is also an interacting model. We will derive its Renyi entropies in the thermodynamic limit and its behaviour in different phases and for different values of the mass-gap will be analysed. In the second part of the thesis we will instead study the dynamics of correlators after a quantum quench , which represent a powerful tool to measure how perturbations and signals propagate through a quantum chain. The emphasis will be on the Transverse Field Ising Chain and the O(3) non-linear sigma model, which will be both studied by means of a semi-classical approach. Moreover in the last chapter we will demonstrate a general result about the dynamics of correlation functions of local observables after a quantum quench in integrable systems. In particular we will show that if there are not long-range interactions in the final Hamiltonian, then the dynamics of the model (non equal- time correlations) is described by the same statistical ensemble that describes its statical properties (equal-time correlations).
Resumo:
In this thesis we discuss a representation of quantum mechanics and quantum and statistical field theory based on a functional renormalization flow equation for the one-particle-irreducible average effective action, and we employ it to get information on some specific systems.
Resumo:
BCJ-relations have a series of important consequences in Quantum FieldrnTheory and in Gravity. In QFT, one can use BCJ-relations to reduce thernnumber of independent colour-ordered partial amplitudes and to relate nonplanarrnand planar diagrams in loop calculations. In addition, one can usernBCJ-numerators to construct gravity scattering amplitudes through a squaringrn procedure. For these reasons, it is important to nd a prescription tornobtain BCJ-numerators without requiring a diagram by diagram approach.rnIn this thesis, after introducing some basic concepts needed for the discussion,rnI will examine the existing diagrammatic prescriptions to obtainrnBCJ-numerators. Subsequently, I will present an algorithm to construct anrneective Yang-Mills Lagrangian which automatically produces kinematic numeratorsrnsatisfying BCJ-relations. A discussion on the kinematic algebrarnfound through scattering equations will then be presented as a way to xrnnon-uniqueness problems in the algorithm.
Resumo:
Some of the most interesting phenomena that arise from the developments of the modern physics are surely vacuum fluctuations. They appear in different branches of physics, such as Quantum Field Theory, Cosmology, Condensed Matter Physics, Atomic and Molecular Physics, and also in Mathematical Physics. One of the most important of these vacuum fluctuations, sometimes called "zero-point energy", as well as one of the easiest quantum effect to detect, is the so-called Casimir effect. The purposes of this thesis are: - To propose a simple retarded approach for dynamical Casimir effect, thus a description of this vacuum effect when we have moving boundaries. - To describe the behaviour of the force acting on a boundary, due to its self-interaction with the vacuum.
Resumo:
In questa tesi vengono presentati i piu recenti risultati relativi all'estensione della teoria dei campi localmente covariante a geometrie che permettano di descrivere teorie di campo supersimmetriche. In particolare, si mostra come la definizione assiomatica possa essere generalizzata, mettendo in evidenza le problematiche rilevanti e le tecniche utilizzate in letteratura per giungere ad una loro risoluzione. Dopo un'introduzione alle strutture matematiche di base, varieta Lorentziane e operatori Green-iperbolici, viene definita l'algebra delle osservabili per la teoria quantistica del campo scalare. Quindi, costruendo un funtore dalla categoria degli spazio-tempo globalmente iperbolici alla categoria delle *-algebre, lo stesso schema viene proposto per le teorie di campo bosoniche, purche definite da un operatore Green-iperbolico su uno spazio-tempo globalmente iperbolico. Si procede con lo studio delle supervarieta e alla definizione delle geometrie di background per le super teorie di campo: le strutture di super-Cartan. Associando canonicamente ad ognuna di esse uno spazio-tempo ridotto, si introduce la categoria delle strutture di super-Cartan (ghsCart) il cui spazio-tempo ridotto e globalmente iperbolico. Quindi, si mostra, in breve, come e possibile costruire un funtore da una sottocategoria di ghsCart alla categoria delle super *-algebre e si conclude presentando l'applicazione dei risultati esposti al caso delle strutture di super-Cartan in dimensione 2|2.