931 resultados para fibre properties


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tensile and compression properties of self-reinforced poly(ethylene terephthalate) (SrPET) composites has been investigated. SrPET composites or all-polymer composites have improved mechanical properties compared to the bulk polymer but with maintained recyclability. In contrast to traditional carbon/glass fibre reinforced composites, SrPET composites are very ductile, resulting in high failure strains without softening or catastrophic failure. In tension, the SrPET composites behave linear elastically until the fibre-matrix interface fails, at which point the stiffness starts decreasing. As the material is further strained, strain hardening occurs and the specimen finally fails at a global strain above 10%. In compression, the composite initially fails through fibre yielding, and at higher strains through fibre bending. The stress-strain response is reminiscent of an elastic-perfectly plastic material with a high strain to failure (typically over 10%). This indicates that SrPET composites are not only candidates as semi-structural composites but also as highly efficient energy absorbing materials. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanically robust and biomimicking scaffolds are needed for structural engineering of tissues such as the intervertebral disc, which are prone to failure and incapable of natural healing. Here, the formation of thick, randomly aligned polycaprolactone electrospun fibre structures infiltrated with alginate is reported. The composites are characterised using both indentation and tensile testing and demonstrate substantially different tensile and compressive moduli. The composites are mechanically robust and exhibit large strains-to-failure, exhibiting toughening mechanisms observed in other composite material systems. The method presented here provides a way to create large-scale biomimetic scaffolds that more closely mimic the composite structure of natural tissue, with tuneable tensile and compressive properties via the fibre and matrix phases, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper, highly porous fibre networks made of 316L fibres, with different fibre volume fractions, are characterized in terms of network architecture, elastic constants and fracture energies. Elastic constants are measured using quasi-static mechanical and modal vibration testing, yielding local and globally averaged properties, respectively. Differences between quasi-static and dynamic elastic constants are attributed to through-thickness shear effects. Regardless of the method employed, networks show signs of material inhomogeneity at high fibre densities, in agreement with X-ray nanotomography results. Strong auxetic (or negative Poisson's ratio) behaviour is observed in the through-thickness direction, which is attributed to fibre kinking induced during processing. Measured fracture energies are compared with model predictions incorporating information about in-plane fibre orientation distribution, fibre volume fraction and single fibre work of fracture. Experimental values are broadly consistent with model predictions, based on the assumption that this energy is primarily associated with plastic deformation of individual fibres within a process zone of the same order as the inter-joint spacing. © 2013 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanically robust and biomimicking scaffolds are needed for structural engineering of tissues such as the intervertebral disc, which are prone to failure and incapable of natural healing. Here, the formation of thick, randomly aligned polycaprolactone electrospun fibre structures infiltrated with alginate is reported. The composites are characterised using both indentation and tensile testing and demonstrate substantially different tensile and compressive moduli. The composites are mechanically robust and exhibit large strains-to-failure, exhibiting toughening mechanisms observed in other composite material systems. The method presented here provides a way to create large-scale biomimetic scaffolds that more closely mimic the composite structure of natural tissue, with tuneable tensile and compressive properties via the fibre and matrix phases, respectively. © 2014 Springer Science+Business Media New York.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electroabsorption modulator using an intra-step quantum well (IQW) active region is fabricated for a radio over fibre system. The strain-compensated InGaAsP/InGaAsP IQW shows good material quality and improved modulation properties, high extinction ratio efficiency (10 dB V-1) and low capacitance (< 0.42 pF), with which high frequency (> 15 GHz) can be obtained. High-speed measurement under high-power excitation shows no power saturation up to an excitation power of 21 dBm. To our knowledge, the input optical power is the highest reported for a multi-quantum well EAM without a heat sink.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the zero dispersion point at 1.3-mu m in optical fibres, 1.3-mu m InGaAsP/InP laser diodes have become main light sources in fibre communication systems recently. In fluences of quantum noises on direct-modulated properties of single-mode 1.3-mu m InGaAsP/InP laser diodes are investigated in this article. Considering the carrier and photon noises and the cross-correlation between the two noises, the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the direct-modulated single-mode laser system are calculated using the linear approximation method. We find that the stochastic resonance (SR) always appears in the dependence of the SNR on the bias current density, and is strongly affected by the cross-correlation coeffcient between the carrier and photon noises, the frequency of modulation signal, and the photon lifetime in the laser cavity. Hence, it is promising to use the SR mechanism to enhance the SNR of direct-modulated InGaAsP/InP laser diodes and improve the quality of optical fibre communication systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A monolithic structured polymer preform was formed by in-situ chemical polymerization of high-purity MMA monomer in a home-made mould. The conditions for fabrication of the preforms were optimized and the preform was drawn to microstructured polymer optical fibre. The optical properties of the resultant elliptical-core fibre were measured. This technique provides advantages over alternative preform fabrication methods such as drilling and capillary stacking, which are less suitable for mass production. (c) 2006 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A compact blue conducting mixed-valence Mo (VI,V) oxide film was grown on the surface of a carbon fibre (CF) microelectrode by cycling the potential between +0.20 and similar to 0.70 V SCE in freshly prepared Na2MoO4 solution in H2SO4 (pH 2). The thicknes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method for electrochemically in situ conductivity measurements based on a reusable glassy carbon disc carbon fibre array double electrode is described. Using this technique and cyclic voltammetry, we have investigated the effects of the doping anion and solvent on the electrochemical properties of polypyrrole film. The electroactivity and potential dependent conductivity of polypyrrole film are strongly affected by solvent and the doping anion's solubility in the solvent, and also by the history of electrochemical treatments in different electrolyte solutions. It is very interesting that NO3-doped polypyrrole can completely keep its conducting state (doped state) at a reasonably negative potential (eg -0.8 V vs. sce) in acetonitrile solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This PhD thesis investigates the application of hollow core photonic crystal fibre for use as an optical fibre nano litre liquid sensor. The use of hollow core photonic crystal fibre for optical fibre sensing is influenced by the vast wealth of knowledge, and years of research that has been conducted for optical waveguides. Hollow core photonic crystal fibres have the potential for use as a simple, rapid and continuous sensor for a wide range of applications. In this thesis, the velocity of a liquid flowing through the core of the fibre (driven by capillary forces) is used for the determination of the viscosity of a liquid. The structure of the hollow core photonic crystal fibre is harnessed to collect Raman scatter from the sample liquid. These two methods are integrated to investigate the range of applications the hollow core photonic crystal fibre can be utilised for as an optical liquid sensor. Understanding the guidance properties of hollow core photonic crystal fibre is forefront in dynamically monitoring the liquid filling. When liquid is inserted fully or selectively to the capillaries, the propagation properties change from photonic bandgap guidance when empty, to index guidance when the core only is filled and finally to a shifted photonic bandgap effect, when the capillaries are fully filled. The alterations to the guidance are exploited for all viscosity and Raman scattering measurements. The concept of the optical fibre viscosity sensor was tested for a wide range of samples, from aqueous solutions of propan-1-ol to solutions of mono-saccharides in phosphate buffer saline. The samples chosen to test the concept were selected after careful consideration of the importance of the liquid in medical and industrial applications. The Raman scattering of a wide range of biological important fluids, such as creatinine, glucose and lactate were investigated, some for the first time with hollow core photonic crystal fibre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future high speed communications networks will transmit data predominantly over optical fibres. As consumer and enterprise computing will remain the domain of electronics, the electro-optical conversion will get pushed further downstream towards the end user. Consequently, efficient tools are needed for this conversion and due to many potential advantages, including low cost and high output powers, long wavelength Vertical Cavity Surface Emitting Lasers (VCSELs) are a viable option. Drawbacks, such as broader linewidths than competing options, can be mitigated through the use of additional techniques such as Optical Injection Locking (OIL) which can require significant expertise and expensive equipment. This thesis addresses these issues by removing some of the experimental barriers to achieving performance increases via remote OIL. Firstly, numerical simulations of the phase and the photon and carrier numbers of an OIL semiconductor laser allowed the classification of the stable locking phase limits into three distinct groups. The frequency detuning of constant phase values (ø) was considered, in particular ø = 0 where the modulation response parameters were shown to be independent of the linewidth enhancement factor, α. A new method to estimate α and the coupling rate in a single experiment was formulated. Secondly, a novel technique to remotely determine the locked state of a VCSEL based on voltage variations of 2mV−30mV during detuned injection has been developed which can identify oscillatory and locked states. 2D & 3D maps of voltage, optical and electrical spectra illustrate corresponding behaviours. Finally, the use of directly modulated VCSELs as light sources for passive optical networks was investigated by successful transmission of data at 10 Gbit/s over 40km of single mode fibre (SMF) using cost effective electronic dispersion compensation to mitigate errors due to wavelength chirp. A widely tuneable MEMS-VCSEL was established as a good candidate for an externally modulated colourless source after a record error free transmission at 10 Gbit/s over 50km of SMF across a 30nm single mode tuning range. The ability to remotely set the emission wavelength using the novel methods developed in this thesis was demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents experimental tests carried out on steel fibre reinforced concrete samples, including mechanical tests as well as non-destructive technique (electrical resistivity) and non destructive technique on cores (X-ray). Electrical resistivity measurements are done as a blind test, to characterise the electrical anisotropy and deduce the distribution and the orientation of fibres. These results are compared to X-ray imaging to check the quality of the non destructive evaluation. Then, flexural and compressive strength are measured on specimens to assess the influence of fibre distribution on the concrete properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For Variable Stiffness (VS) composites with steered curvilinear tow paths, the fiber orientation angle varies continuously throughout the laminate, and is not required to be straight, parallel and uniform within each ply as in conventional composite laminates. Hence, the thermal properties (conduction), as well as the structural stiffness and strength, vary as functions of location in the laminate, and the associated composite structure is often called a “variable stiffness” composite structure. The steered fibers lead not only to the alteration of mechanical load paths, but also to the alteration of thermal paths that may
result in favorable temperature distributions within the laminate and improve the laminate performance. Evaluation of VS laminate performance under thermal loading is the focus of this chapter. Thermal performance evaluations require experimental and numerical analysis of VS laminates under different processing and loading conditions. One of the advantages of using composite materials in many applications is the tailoring capability of the laminate,
not only during the design phase but also for manufacturing. Heat transfer through variable conduction and chemical reaction (degree of cure) occurring during manufacturing (curing) plays an important role in the final thermal and mechanical performance, and shape of composite structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the increased applications of the composite materials in aerospace due to their exceptional physical and mechanical properties, the machining of composites remains a challenge. Fibre reinforced laminated composites are prone to different damages during machining process such as delamination, fibre pull-out, microcracks, thermal damages. Optimization of the drilling process parameters can reduces the probability of these damages. In the current research, a 3D finite element (FE) model is developed of the process of drilling in the carbon fibre reinforced composite (CFC). The FE model is used to investigate the effects of cutting speed and feed rate on thrust force, torque and delamination in the drilling of carbon fiber reinforced laminated composite. A mesoscale FE model taking into account of the different oriented plies and interfaces has been proposed to predict different damage modes in the plies and delamination. For validation purposes, experimental drilling tests have been performed and compared to the results of the finite element analysis. Using Matlab a digital image analysis code has been developed to assess the delamination factor produced in CFC as a result of drilling. © Springer Science+Business Media B.V. 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation aims to characterise the damping properties of the nonwoven materials with potential applications in automotive and aerospace industry. Nonwovens are a popular choice for many applications due to their relatively low manufacturing cost and unique properties. It is known that nonwovens are efficient energy dispersers for certain applications such as acoustic damping and ballistic impact. It is anticipated that these energy absorption properties could eventually be used to provide damping for mechanical vibrations. However the behaviour of nonwovens under dynamic load and vibration has not been investigated before. Therefore we intend to highlight these aspects of the behaviour of the nonwovens through this research. In order to obtain an insight to the energy absorption properties of the nonwoven fabrics, a range of tests has been performed. Forced vibration of the cantilever beam is used to explore damping over a range of resonance modes and input amplitudes. The tests are conducted on aramid, glass fibre and polyester fabrics with a range of area densities and various coatings. The tests clarified the general dynamic behaviour of the fabrics tested and the possible response in more real application condition as well. The energy absorption in both thickness and plane of the fabric is tested. The effects of the area density on the results are identified. The main absorption mechanism is known to be the friction. The frictional properties are improved by using a smaller fibre denier and increasing fibre length, this is a result of increasing contact surface between fibres. It is expected the increased friction result in improving damping. The results indicate different mechanism of damping for fiber glass fabrics compared to the aramid fabrics. The frequency of maximum efficiency of damping is identified for the fabrics tested. These can be used to recommend potential applications.