772 resultados para fiber and waveguide optics
Resumo:
In the present paper we experimentally demonstrate a generation in a short Raman fiber laser having 10 000 different longitudinal modes only. We design the laser using 12 meters of commercially available fiber. Contrary to the recently demonstrated single longitudinal mode DFB Raman laser and short DBR Raman laser, in the laser under study the number of modes is high enough for efficient nonlinear interactions. Experimentally measured time dynamics reveals the presence of mode correlations in the radiation: the measured extreme events lasts for more than 10 round-trips.
Resumo:
In the present paper we numerically study instrumental impact on statistical properties of quasi-CW Raman fiber laser using a simple model of multimode laser radiation. Effects, that have the most influence, are limited electrical bandwidth of measurement equipment and noise. To check this influence, we developed a simple model of the multimode quasi- CW generation with exponential statistics (i.e. uncorrelated modes). We found that the area near zero intensity in probability density function (PDF) is strongly affected by both factors, for example both lead to formation of a negative wing of intensity distribution. But far wing slope of PDF is not affected by noise and, for moderate mismatch between optical and electrical bandwidth, is only slightly affected by bandwidth limitation. The generation spectrum often becomes broader at higher power in experiments, so the spectral/electrical bandwidth mismatch factor increases over the power that can lead to artificial dependence of the PDF slope over the power. It was also found that both effects influence the ACF background level: noise impact decreases it, while limited bandwidth leads to its increase. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
We have measured the optical phase sensitivity of fiber based on poly(methyl methacrylate) under near-single-mode conditions at 632.8 nm wavelength. The elongation sensitivity is 131±3 × 105 rad m-1 and the temperature sensitivity is -212±26 rad m -1 K-1. These values are somewhat larger than those for silica fiber and are consistent with the values expected on the basis of the bulk polymer properties. © 2005 Optical Society of America.
Resumo:
Long-lived light bullets fully localized in both space and time can be generated in novel photonic media such as multicore optical fiber or waveguide arrays. In this paper we present detailed theoretical analysis on the existence and stability of the discrete-continuous light bullets using a very generic model that occurs in a number of applications.
Resumo:
Recently, the concept of a random distributed feedback (DFB) lasing in optical fibers has been demonstrated [1], A number of different random DFB fiber lasers has been demonstrated so far including tunable, multiwalength, cascaded generation, generation in different spectral bands etc [2-7]. All systems are based on standard low-loss germanium doped silica core fibres having relatively low Rayleigh scattering coefficient. Thus, the typical length of random DFB fiber lasers is in the range from several kilometres to tens of kilometres to accumulate enough random feedback. Here we demonstrate for the first time to our knowledge the random DFB fiber laser based on a nitrogen doped silica core (N-doped) fiber. The fiber has several times higher Rayleigh scattering coefficient compared to standard telecommunication fibres. Thus, the generation is achieved in 500 meters long fiber only. © 2013 IEEE.
Resumo:
We propose a long range, high precision optical time domain reflectometry (OTDR) based on an all-fiber supercontinuum source. The source simply consists of a CW pump laser with moderate power and a section of fiber, which has a zero dispersion wavelength near the laser's central wavelength. Spectrum and time domain properties of the source are investigated, showing that the source has great capability in nonlinear optics, such as correlation OTDR due to its ultra-wide-band chaotic behavior, and mm-scale spatial resolution is demonstrated. Then we analyze the key factors limiting the operational range of such an OTDR, e. g., integral Rayleigh backscattering and the fiber loss, which degrades the optical signal to noise ratio at the receiver side, and then the guideline for counter-act such signal fading is discussed. Finally, we experimentally demonstrate a correlation OTDR with 100km sensing range and 8.2cm spatial resolution (1.2 million resolved points), as a verification of theoretical analysis.
Resumo:
Current copper based circuit technology is becoming a limiting factor in high speed data transfer applications as processors are improving at a faster rate than are developments to increase on board data transfer. One solution is to utilize optical waveguide technology to overcome these bandwidth and loss restrictions. The use of this technology virtually eliminates the heat and cross-talk loss seen in copper circuitry, while also operating at a higher bandwidth. Transitioning current fabrication techniques from small scale laboratory environments to large scale manufacturing presents significant challenges. Optical-to-electrical connections and out-of-plane coupling are significant hurdles in the advancement of optical interconnects. The main goals of this research are the development of direct write material deposition and patterning tools for the fabrication of waveguide systems on large substrates, and the development of out-of-plane coupler components compatible with standard fiber optic cabling. Combining these elements with standard printed circuit boards allows for the fabrication of fully functional optical-electrical-printed-wiring-boards (OEPWBs). A direct dispense tool was designed, assembled, and characterized for the repeatable dispensing of blanket waveguide layers over a range of thicknesses (25-225 µm), eliminating waste material and affording the ability to utilize large substrates. This tool was used to directly dispense multimode waveguide cores which required no UV definition or development. These cores had circular cross sections and were comparable in optical performance to lithographically fabricated square waveguides. Laser direct writing is a non-contact process that allows for the dynamic UV patterning of waveguide material on large substrates, eliminating the need for high resolution masks. A laser direct write tool was designed, assembled, and characterized for direct write patterning waveguides that were comparable in quality to those produced using standard lithographic practices (0.047 dB/cm loss for laser written waveguides compared to 0.043 dB/cm for lithographic waveguides). Straight waveguides, and waveguide turns were patterned at multimode and single mode sizes, and the process was characterized and documented. Support structures such as angled reflectors and vertical posts were produced, showing the versatility of the laser direct write tool. Commercially available components were implanted into the optical layer for out-of-plane routing of the optical signals. These devices featured spherical lenses on the input and output sides of a total internal reflection (TIR) mirror, as well as alignment pins compatible with standard MT design. Fully functional OEPWBs were fabricated featuring input and output out-of-plane optical signal routing with total optical losses not exceeding 10 dB. These prototypes survived thermal cycling (-40°C to 85°C) and humidity exposure (95±4% humidity), showing minimal degradation in optical performance. Operational failure occurred after environmental aging life testing at 110°C for 216 hours.
Resumo:
The intensity pulsations of a cw 1030 nm Yb:Phosphate monolithic waveguide laser with distributed feedback are described. We show that the pulsations could result from the coupling of the two orthogonal polarization modes through the two photon process of cooperative luminescence. The predictions of the presented theoretical model agree well with the observed behaviour.
Resumo:
The results of theoretical investigations of two-channel waveguide modulator based on Surface Wave (SW) propagation are presented. The structure studied consists of two n-type semiconductor waveguide channels separated from each other by a dielectric gap and coated by a metal. The SW propagates at the semiconductor-metal interface across an external magnetic field which is parallel to the interface. An external dc voltage is applied to the metal surface of one channel to provide a small phase shift between two propagating modes. In a coupled mode approximation, two possible regimes of operation of the structure, namely as a directional coupler and as an electro-optical modulator, are considered. Our results suggest new applications in millimeter and submillimeter wave solid-state electronics and integrated optics.
Resumo:
Fiber Bragg Grating (FBG) accelerometers using transverse forces with an inertial object placed at the middle of the FBG have a high sensitivity but low resonant frequency. The resonant frequency 26 Hz and sensitivity at 6 Hz 1.29 nm/g were reported based on a 50mm-long FBG accelerometer. We demonstrate that the first FBG accelerometer based on a transversely rotating stick, which can, at the same or even larger size, keep the high sensitivity and significantly increase the low resonant frequency. In our experiments, a 77.5mm-long FBG accelerometer has achieved a similar sensitivity but 65% higher resonant frequency. This novel structure not only significantly widens the potential applications of FBG accelerometers by increasing their resonant frequencies but also provides a new route to design other accelerometers, e.g. micro accelerometers.
Resumo:
In this paper we image the highly confined long range plasmons of a nanoscale metal stripe waveguide using quantum emitters. Plasmons were excited using a highly focused 633 nm laser beam and a specially designed grating structure to provide stronger incoupling to the desired mode. A homogeneous thin layer of quantum dots was used to image the near field intensity of the propagating plasmons on the waveguide. We observed that the photoluminescence is quenched when the QD to metal surface distance is less than 10 nm. The optimised spacer layer thickness for the stripe waveguides was found to be around 20 nm. Authors believe that the findings of this paper prove beneficial for the development of plasmonic devices utilising stripe waveguides.
Resumo:
Purpose Transient changes in corneal topography associated with soft and conventional or reverse geometry rigid contact lens wear have been well documented; however, only a few studies have examined the influence of scleral contact lens wear upon the cornea. Therefore, in this study, we examined the influence of modern miniscleral contact lenses, which land entirely on the sclera and overlying tissues, upon anterior corneal curvature and optics. Methods Anterior corneal topography and elevation data were acquired using Scheimpflug imaging (Pentacam HR, Oculus) immediately prior to and following 8 hours of miniscleral contact lens wear in 15 young healthy adults (mean age 22 ± 3 years, 8 East Asian, 7 Caucasian) with normal corneae. Corneal diurnal variations were accounted for using data collected on a dedicated measurement day without contact lens wear. Corneal clearance was quantified using an optical coherence tomographer (RS-3000, Nidek) following lens insertion and after 8 hours of lens wear. Results Although corneal clearance was maintained throughout the 8 hour lens wear period, significant corneal flattening (up to 0.08 ± 0.04 mm) was observed, primarily in the superior mid-peripheral cornea, which resulted in a slight increase in against-the-rule corneal astigmatism (mean +0.02/-0.15 x 94 for an 8 mm diameter). Higher order aberration terms of horizontal coma, vertical coma and spherical aberration all underwent significant changes for an 8 mm corneal diameter (p ≤ 0.01), which typically resulted in a decrease in RMS error values (mean change in total higher order RMS -0.035 ± 0.046 µm for an 8 mm diameter). There was no association between the magnitude of change in central or mid-peripheral corneal clearance during lens wear and the observed changes in corneal curvature (p > 0.05). However, Asian participants displayed a significantly greater reduction in corneal clearance (p = 0.04) and greater superior-nasal corneal flattening compared to Caucasians (p = 0.048). Conclusions Miniscleral contact lenses that vault the cornea induce significant changes in anterior corneal surface topography and higher order aberrations following 8 hours of lens wear. The region of greatest corneal flattening was observed in the superior-nasal mid-periphery, more so in Asian participants. Practitioners should be aware that corneal measurements obtained following miniscleral lens removal may mask underlying corneal steepening.
Resumo:
An instrument for simultaneous measurement of dynamic strain and temperature in a thermally unstable ambience has been proposed, based on fiber Bragg grating technology. The instrument can function as a compact and stand-alone broadband thermometer and a dynamic strain gauge. It employs a source wavelength tracking procedure for linear dependence of the output on the measurand, offering high dynamic range. Two schemes have been demonstrated with their relative merits. As a thermometer, the present instrumental configuration can offer a linear response in excess of 500 degrees C that can be easily extended by adding a suitable grating and source without any alteration in the procedure. Temperature sensitivity is about 0.06 degrees C for a bandwidth of 1 Hz. For the current grating, the upper limit of strain measurement is about 150 mu epsilon with a sensitivity of about 80 n epsilon Hz(-1/2). The major source of uncertainty associated with dynamic strain measurement is the laser source intensity noise, which is of broad spectral band. A low noise source device or the use of optical power regulators can offer improved performance. The total harmonic distortion is less than 0.5% up to about 50 mu epsilon, 1.2% at 100 mu epsilon and about 2.3% at 150 mu epsilon. Calibrated results of temperature and strain measurement with the instrument have been presented. Traces of ultrasound signals recorded by the system at 200 kHz, in an ambience of 100-200 degrees C temperature fluctuation, have been included. Also, the vibration spectrum and engine temperature of a running internal combustion engine has been recorded as a realistic application of the system.
Resumo:
In mammals, acquisition of fertilization competence of spermatozoa is dependent on the phenomenon of sperm capacitation. One of the critical molecular events of sperm capacitation is protein tyrosine phosphorylation. In a previous study, we demonstrated that a specific epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor, tyrphostin-A47, inhibited hamster sperm capacitation, accompanied by a reduced sperm protein tyrosine phosphorylation. Interestingly, a high percentage of tyrphostin-A47-treated spermatozoa exhibited circular motility, which was associated with a distinct hypo-tyrosine phosphorylation of flagellar proteins, predominantly of Mr 45,000-60,000. In this study, we provide evidence on the localization of capacitation-associated tyrosine-phosphorylated proteins to the nonmembranous, structural components of the sperm flagellum. Consistent with this, we show their ultrastructural localization in the outer dense fiber, axoneme, and fibrous sheath of spermatozoa. Among hypo-tyrosine phosphorylated major proteins of tyrphostin-A47-treated spermatozoa, we identified the 45 kDa protein as outer dense fiber protein-2 and the 51 kDa protein as tektin-2, components of the sperm outer dense fiber and axoneme, respectively. This study shows functional association of hypo-tyrosine-phosphorylation status of outer dense fiber protein-2 and tektin-2 with impaired flagellar bending of spermatozoa, following inhibition of EGFR-tyrosine kinase, thereby showing the critical importance of flagellar protein tyrosine phosphorylation during capacitation and hyperactivation of hamster spermatozoa.