966 resultados para feed-forward control


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation contributes for the development of methodologies through feed forward artificial neural networks for microwave and optical devices modeling. A bibliographical revision on the applications of neuro-computational techniques in the areas of microwave/optical engineering was carried through. Characteristics of networks MLP, RBF and SFNN, as well as the strategies of supervised learning had been presented. Adjustment expressions of the networks free parameters above cited had been deduced from the gradient method. Conventional method EM-ANN was applied in the modeling of microwave passive devices and optical amplifiers. For this, they had been proposals modular configurations based in networks SFNN and RBF/MLP objectifying a bigger capacity of models generalization. As for the training of the used networks, the Rprop algorithm was applied. All the algorithms used in the attainment of the models of this dissertation had been implemented in Matlab

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Artificial neural networks are usually applied to solve complex problems. In problems with more complexity, by increasing the number of layers and neurons, it is possible to achieve greater functional efficiency. Nevertheless, this leads to a greater computational effort. The response time is an important factor in the decision to use neural networks in some systems. Many argue that the computational cost is higher in the training period. However, this phase is held only once. Once the network trained, it is necessary to use the existing computational resources efficiently. In the multicore era, the problem boils down to efficient use of all available processing cores. However, it is necessary to consider the overhead of parallel computing. In this sense, this paper proposes a modular structure that proved to be more suitable for parallel implementations. It is proposed to parallelize the feedforward process of an RNA-type MLP, implemented with OpenMP on a shared memory computer architecture. The research consistes on testing and analizing execution times. Speedup, efficiency and parallel scalability are analyzed. In the proposed approach, by reducing the number of connections between remote neurons, the response time of the network decreases and, consequently, so does the total execution time. The time required for communication and synchronization is directly linked to the number of remote neurons in the network, and so it is necessary to investigate which one is the best distribution of remote connections

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cobb male broiler chicks (1,000) on new litter were used to evaluate effects of dietary electrolyte balance [DEB; Na+K-Cl, milliequivalents (mEq) per kilogram] under tropical summer conditions. Corn-soybean meal-based mash diets had salt (NaCl) alone or in combination with one or more supplements: sodium bicarbonate (NaHCO3), ammonium chloride (NH4Cl), or potassium bicarbonate (KHCO3). A completely randomized design, with five starter and grower feed treatments (control: 145, then 130 mEq/kg; or 0, 120, 240, or 360 mEq/kg throughout) and four replicate pens (1.5 x 3.2 m) per treatment (50 chicks per pen), was used. Diets were analyzed for Na, K, and Cl for confirmation. There were no significant (P < 0.05) effects of treatments on mortality or processing parameters. Water intake increased linearly with increasing DEB, giving higher litter moistures and lower rectal temperatures. Blood HCO3 and pH increased with the highest DEB (360 mEq/kg) causing respiratory alkalosis. The DEB of 240 mEg/kg gave best weight gain and feed conversion ratio, and ideal DEB predicted by regression analyses were 186 and 197 mEq/kg from 0 to 21 d of age and 236 and 207 mEq/kg of feed from 0 to 42 d, respectively. These DEB corresponded to estimated (interpolated) values in predicted optimal 186 to 197 mEq/kg starter of Na 0.38 to 0.40% and Cl 0.405 to 0.39% (K = 0.52%), in 207 to 236 mEq/kg starter, Na 0.409 to 0.445% and Cl 0.326 to 0.372% Cl (K = 0.52%), and in grower Na 0.41 to 0.445%, Cl 0.315 to 0.267% (K = 0.47%).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O imageamento da porosidade é uma representação gráfica da distribuição lateral da porosidade da rocha, estimada a partir de dados de perfis geofísicos de poço. Apresenta-se aqui uma metodologia para produzir esta imagem geológica, totalmente independente da intervenção do intérprete, através de um algoritmo, dito, interpretativo baseado em dois tipos de redes neurais artificiais. A primeira parte do algoritmo baseia-se em uma rede neural com camada competitiva e é construído para realizar uma interpretação automática do clássico gráfico o Pb - ΦN, produzindo um zoneamento do perfil e a estimativa da porosidade. A segunda parte baseia-se em uma rede neural com função de base radial, projetado para realizar uma integração espacial dos dados, a qual pode ser dividida em duas etapas. A primeira etapa refere-se à correlação de perfis de poço e a segunda à produção de uma estimativa da distribuição lateral da porosidade. Esta metodologia ajudará o intérprete na definição do modelo geológico do reservatório e, talvez o mais importante, o ajudará a desenvolver de um modo mais eficiente as estratégias para o desenvolvimento dos campos de óleo e gás. Os resultados ou as imagens da porosidade são bastante similares às seções geológicas convencionais, especialmente em um ambiente deposicional simples dominado por clásticos, onde um mapa de cores, escalonado em unidades de porosidade aparente para as argilas e efetiva para os arenitos, mostra a variação da porosidade e a disposição geométrica das camadas geológicas ao longo da seção. Esta metodologia é aplicada em dados reais da Formação Lagunillas, na Bacia do Lago Maracaibo, Venezuela.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quality is a variable concept, which involves many factors, depending on the consumer market. In meat production, the concern with environmental aspects, animal welfare and the health and safety of workers is increasing. This work studied the effect of controlled atmosphere stunning of broilers on meat features and biochemical parameters for stress. Cobb broilers were stunned by electrical stunning and by controlled atmosphere with 70% CO2 and 70% CO2 + 30% Argon. After stunning, serum levels of glucose, lactate and corticosterone were compared with those of broilers at rest, immediately before transportation and slaughter and after 12 h of feed withdrawal (control group). At slaughter, blood volume drained during bleeding was not different for the stunning methods tested, ranging from 3.3 to 3.4% birds weight. This finding was important to demonstrate that gas stunning was not responsible for the animals′ death. Final pH in breast (6.1 to 6.2) and thigh (6.3 to 6.5) also did not vary among the different stunning methods (P > 0.05). Lightness (L = 60.55) and redness (a = +8.94) values found for breasts from electrical stunning showed that they were darker and redder (P < 0.05), probably due to changes in blood pressure. Glucose and corticosterone levels were not different between gas stunned birds (302.45 to 315.7 mg/dl and 55.71 to 72.49 ng/ml respectively) and birds at rest (305.95 mg/dl and 50.65 ng/ml) (P > 0.05). These stress indicators were higher (337.65 mg/dl for glucose and 104.13 ng/ml for costicosterone) when electrical stunning was used (P < 0.05). Lactate concentrations were lower (5.4 mmol/l) for birds at rest (P < 0.05) but not different for all stunning methods tested (7.3 to 8.1 mmol/l; P > 0.05). These results show that serum glucose may be used as a stress indicator in birds, with the advantage of being a quick and cheap biochemical test. Gas stunning favored birds′ management during slaughter and so reduced workers′ effort and injury hazard and the amount of feces and dust in the room. To make this method available for a large scale process, adjustments in equipments will be necessary to avoid delays in the processing line.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to the lack of optical random access memory, optical fiber delay line (FDL) is currently the only way to implement optical buffering. Feed-forward and feedback are two kinds of FDL structures in optical buffering. Both have advantages and disadvantages. In this paper, we propose a more effective hybrid FDL architecture that combines the merits of both schemes. The core of this switch is the arrayed waveguide grating (AWG) and the tunable wavelength converter (TWC). It requires smaller optical device sizes and fewer wavelengths and has less noise than feedback architecture. At the same time, it can facilitate preemptive priority routing which feed-forward architecture cannot support. Our numerical results show that the new switch architecture significantly reduces packet loss probability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La distorsione della percezione della distanza tra due stimoli puntuali applicati sulla superfice della pelle di diverse regioni corporee è conosciuta come Illusione di Weber. Questa illusione è stata osservata, e verificata, in molti esperimenti in cui ai soggetti era chiesto di giudicare la distanza tra due stimoli applicati sulla superficie della pelle di differenti parti corporee. Da tali esperimenti si è dedotto che una stessa distanza tra gli stimoli è giudicata differentemente per diverse regioni corporee. Il concetto secondo cui la distanza sulla pelle è spesso percepita in maniera alterata è ampiamente condiviso, ma i meccanismi neurali che manovrano questa illusione sono, allo stesso tempo, ancora ampiamente sconosciuti. In particolare, non è ancora chiaro come sia interpretata la distanza tra due stimoli puntuali simultanei, e quali aree celebrali siano coinvolte in questa elaborazione. L’illusione di Weber può essere spiegata, in parte, considerando la differenza in termini di densità meccano-recettoriale delle differenti regioni corporee, e l’immagine distorta del nostro corpo che risiede nella Corteccia Primaria Somato-Sensoriale (homunculus). Tuttavia, questi meccanismi sembrano non sufficienti a spiegare il fenomeno osservato: infatti, secondo i risultati derivanti da 100 anni di sperimentazioni, le distorsioni effettive nel giudizio delle distanze sono molto più piccole rispetto alle distorsioni che la Corteccia Primaria suggerisce. In altre parole, l’illusione osservata negli esperimenti tattili è molto più piccola rispetto all’effetto prodotto dalla differente densità recettoriale che affligge le diverse parti del corpo, o dall’estensione corticale. Ciò, ha portato a ipotizzare che la percezione della distanza tattile richieda la presenza di un’ulteriore area celebrale, e di ulteriori meccanismi che operino allo scopo di ridimensionare – almeno parzialmente – le informazioni derivanti dalla corteccia primaria, in modo da mantenere una certa costanza nella percezione della distanza tattile lungo la superfice corporea. E’ stata così proposta la presenza di una sorta di “processo di ridimensionamento”, chiamato “Rescaling Process” che opera per ridurre questa illusione verso una percezione più verosimile. Il verificarsi di questo processo è sostenuto da molti ricercatori in ambito neuro scientifico; in particolare, dal Dr. Matthew Longo, neuro scienziato del Department of Psychological Sciences (Birkbeck University of London), le cui ricerche sulla percezione della distanza tattile e sulla rappresentazione corporea sembrano confermare questa ipotesi. Tuttavia, i meccanismi neurali, e i circuiti che stanno alla base di questo potenziale “Rescaling Process” sono ancora ampiamente sconosciuti. Lo scopo di questa tesi è stato quello di chiarire la possibile organizzazione della rete, e i meccanismi neurali che scatenano l’illusione di Weber e il “Rescaling Process”, usando un modello di rete neurale. La maggior parte del lavoro è stata svolta nel Dipartimento di Scienze Psicologiche della Birkbeck University of London, sotto la supervisione del Dott. M. Longo, il quale ha contribuito principalmente all’interpretazione dei risultati del modello, dando suggerimenti sull’elaborazione dei risultati in modo da ottenere un’informazione più chiara; inoltre egli ha fornito utili direttive per la validazione dei risultati durante l’implementazione di test statistici. Per replicare l’illusione di Weber ed il “Rescaling Proess”, la rete neurale è stata organizzata con due strati principali di neuroni corrispondenti a due differenti aree funzionali corticali: • Primo strato di neuroni (il quale dà il via ad una prima elaborazione degli stimoli esterni): questo strato può essere pensato come parte della Corteccia Primaria Somato-Sensoriale affetta da Magnificazione Corticale (homunculus). • Secondo strato di neuroni (successiva elaborazione delle informazioni provenienti dal primo strato): questo strato può rappresentare un’Area Corticale più elevata coinvolta nell’implementazione del “Rescaling Process”. Le reti neurali sono state costruite includendo connessioni sinaptiche all’interno di ogni strato (Sinapsi Laterali), e connessioni sinaptiche tra i due strati neurali (Sinapsi Feed-Forward), assumendo inoltre che l’attività di ogni neurone dipenda dal suo input attraverso una relazione sigmoidale statica, cosi come da una dinamica del primo ordine. In particolare, usando la struttura appena descritta, sono state implementate due differenti reti neurali, per due differenti regioni corporee (per esempio, Mano e Braccio), caratterizzate da differente risoluzione tattile e differente Magnificazione Corticale, in modo da replicare l’Illusione di Weber ed il “Rescaling Process”. Questi modelli possono aiutare a comprendere il meccanismo dell’illusione di Weber e dare così una possibile spiegazione al “Rescaling Process”. Inoltre, le reti neurali implementate forniscono un valido contributo per la comprensione della strategia adottata dal cervello nell’interpretazione della distanza sulla superficie della pelle. Oltre allo scopo di comprensione, tali modelli potrebbero essere impiegati altresì per formulare predizioni che potranno poi essere verificate in seguito, in vivo, su soggetti reali attraverso esperimenti di percezione tattile. E’ importante sottolineare che i modelli implementati sono da considerarsi prettamente come modelli funzionali e non intendono replicare dettagli fisiologici ed anatomici. I principali risultati ottenuti tramite questi modelli sono la riproduzione del fenomeno della “Weber’s Illusion” per due differenti regioni corporee, Mano e Braccio, come riportato nei tanti articoli riguardanti le illusioni tattili (per esempio “The perception of distance and location for dual tactile pressures” di Barry G. Green). L’illusione di Weber è stata registrata attraverso l’output delle reti neurali, e poi rappresentata graficamente, cercando di spiegare le ragioni di tali risultati.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L’interazione che abbiamo con l’ambiente che ci circonda dipende sia da diverse tipologie di stimoli esterni che percepiamo (tattili, visivi, acustici, ecc.) sia dalla loro elaborazione per opera del nostro sistema nervoso. A volte però, l’integrazione e l’elaborazione di tali input possono causare effetti d’illusione. Ciò si presenta, ad esempio, nella percezione tattile. Infatti, la percezione di distanze tattili varia al variare della regione corporea considerata. Il concetto che distanze sulla cute siano frequentemente erroneamente percepite, è stato scoperto circa un secolo fa da Weber. In particolare, una determinata distanza fisica, è percepita maggiore su parti del corpo che presentano una più alta densità di meccanocettori rispetto a distanze applicate su parti del corpo con inferiore densità. Oltre a questa illusione, un importante fenomeno osservato in vivo è rappresentato dal fatto che la percezione della distanza tattile dipende dall’orientazione degli stimoli applicati sulla cute. In sostanza, la distanza percepita su una regione cutanea varia al variare dell’orientazione degli stimoli applicati. Recentemente, Longo e Haggard (Longo & Haggard, J.Exp.Psychol. Hum Percept Perform 37: 720-726, 2011), allo scopo di investigare come sia rappresentato il nostro corpo all’interno del nostro cervello, hanno messo a confronto distanze tattili a diverse orientazioni sulla mano deducendo che la distanza fra due stimoli puntuali è percepita maggiore se applicata trasversalmente sulla mano anziché longitudinalmente. Tale illusione è nota con il nome di Illusione Tattile Orientazione-Dipendente e diversi risultati riportati in letteratura dimostrano che tale illusione dipende dalla distanza che intercorre fra i due stimoli puntuali sulla cute. Infatti, Green riporta in un suo articolo (Green, Percpept Pshycophys 31, 315-323, 1982) il fatto che maggiore sia la distanza applicata e maggiore risulterà l’effetto illusivo che si presenta. L’illusione di Weber e l’illusione tattile orientazione-dipendente sono spiegate in letteratura considerando differenze riguardanti la densità di recettori, gli effetti di magnificazione corticale a livello della corteccia primaria somatosensoriale (regioni della corteccia somatosensoriale, di dimensioni differenti, sono adibite a diverse regioni corporee) e differenze nella dimensione e forma dei campi recettivi. Tuttavia tali effetti di illusione risultano molto meno rilevanti rispetto a quelli che ci si aspetta semplicemente considerando i meccanismi fisiologici, elencati in precedenza, che li causano. Ciò suggerisce che l’informazione tattile elaborata a livello della corteccia primaria somatosensoriale, riceva successivi step di elaborazione in aree corticali di più alto livello. Esse agiscono allo scopo di ridurre il divario fra distanza percepita trasversalmente e distanza percepita longitudinalmente, rendendole più simili tra loro. Tale processo assume il nome di “Rescaling Process”. I meccanismi neurali che operano nel cervello allo scopo di garantire Rescaling Process restano ancora largamente sconosciuti. Perciò, lo scopo del mio progetto di tesi è stato quello di realizzare un modello di rete neurale che simulasse gli aspetti riguardanti la percezione tattile, l’illusione orientazione-dipendente e il processo di rescaling avanzando possibili ipotesi circa i meccanismi neurali che concorrono alla loro realizzazione. Il modello computazionale si compone di due diversi layers neurali che processano l’informazione tattile. Uno di questi rappresenta un’area corticale di più basso livello (chiamata Area1) nella quale una prima e distorta rappresentazione tattile è realizzata. Per questo, tale layer potrebbe rappresentare un’area della corteccia primaria somatosensoriale, dove la rappresentazione della distanza tattile è significativamente distorta a causa dell’anisotropia dei campi recettivi e della magnificazione corticale. Il secondo layer (chiamato Area2) rappresenta un’area di più alto livello che riceve le informazioni tattili dal primo e ne riduce la loro distorsione mediante Rescaling Process. Questo layer potrebbe rappresentare aree corticali superiori (ad esempio la corteccia parietale o quella temporale) adibite anch’esse alla percezione di distanze tattili ed implicate nel Rescaling Process. Nel modello, i neuroni in Area1 ricevono informazioni dagli stimoli esterni (applicati sulla cute) inviando quindi informazioni ai neuroni in Area2 mediante sinapsi Feed-forward eccitatorie. Di fatto, neuroni appartenenti ad uno stesso layer comunicano fra loro attraverso sinapsi laterali aventi una forma a cappello Messicano. E’ importante affermare che la rete neurale implementata è principalmente un modello concettuale che non si preme di fornire un’accurata riproduzione delle strutture fisiologiche ed anatomiche. Per questo occorre considerare un livello astratto di implementazione senza specificare un’esatta corrispondenza tra layers nel modello e regioni anatomiche presenti nel cervello. Tuttavia, i meccanismi inclusi nel modello sono biologicamente plausibili. Dunque la rete neurale può essere utile per una migliore comprensione dei molteplici meccanismi agenti nel nostro cervello, allo scopo di elaborare diversi input tattili. Infatti, il modello è in grado di riprodurre diversi risultati riportati negli articoli di Green e Longo & Haggard.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

I sistemi di intelligenza artificiale vengono spesso messi a confronto con gli aspetti biologici riguardanti il cervello umano. L’interesse per la modularità è in continua crescita, che sta portando a risultati davvero interessanti attraverso l’utilizzo di sistemi artificiali intelligenti, come le reti neuronali. Molte reti, sia biologiche sia artificiali sono organizzate in moduli, i quali rappresentano cluster densi di parti interconnesse fra loro all’interno di una rete complessa. Nel campo dell’ingegneria, si usano design modulari per spiegare come una macchina è costituita da parti separate. Lo studio della struttura e delle funzioni di organismi/processi complessi si basa implicitamente su un principio di organizzazione modulare, vale a dire si dà per acquisito il fatto che siano modulari, cioè composti da parti con forma e/o funzioni diverse. Questo elaborato si propone di esporre gli aspetti fondamentali riguardanti la modularità di reti neuronali, le sue origini evolutive, le condizioni necessarie o sufficienti che favoriscono l’emergere dei moduli e relativi vantaggi. Il primo capitolo fornisce alcune conoscenze di base che permettono di leggere gli esperimenti delle parti successive con consapevolezza teorica più profonda. Si descrivono reti neuronali artificiali come sistemi intelligenti ispirati alla struttura di reti neurali biologiche, soffermandosi in particolare sulla rete feed-forward, sull’algoritmo di backpropagation e su modelli di reti neurali modulari. Il secondo capitolo offre una visione delle origini evolutive della modularità e dei meccanismi evolutivi riguardanti sistemi biologici, una classificazione dei vati tipi di modularità, esplorando il concetto di modularità nell’ambito della psicologia cognitiva. Si analizzano i campi disciplinari a cui questa ricerca di modularità può portare vantaggi. Dal terzo capitolo che inizia a costituire il corpo centrale dell’elaborato, si dà importanza alla modularità nei sistemi computazionali, illustrando alcuni casi di studio e relativi metodi presenti in letteratura e fornendo anche una misura quantitativa della modularità. Si esaminano le varie possibilità di evoluzione della modularità: spontanea, da specializzazione, duplicazione, task-dependent, ecc. passando a emulare l’evoluzione di sistemi neurali modulari con applicazione al noto modello “What-Where” e a vari modelli con caratteristiche diverse. Si elencano i vantaggi che la modularità produce, soffermandosi sull’algoritmo di apprendimento, sugli ambienti che favoriscono l’evoluzione della modularità con una serie di confronti fra i vari tipi, statici e dinamici. In ultimo, come il vantaggio di avere connessioni corte possa portare a sviluppare modularità. L’obiettivo comune è l’emergere della modularità in sistemi neuronali artificiali, che sono usati per applicazioni in numerosi ambiti tecnologici.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Obesity is a multifactorial trait, which comprises an independent risk factor for cardiovascular disease (CVD). The aim of the current work is to study the complex etiology beneath obesity and identify genetic variations and/or factors related to nutrition that contribute to its variability. To this end, a set of more than 2300 white subjects who participated in a nutrigenetics study was used. For each subject a total of 63 factors describing genetic variants related to CVD (24 in total), gender, and nutrition (38 in total), e.g. average daily intake in calories and cholesterol, were measured. Each subject was categorized according to body mass index (BMI) as normal (BMI ≤ 25) or overweight (BMI > 25). Two artificial neural network (ANN) based methods were designed and used towards the analysis of the available data. These corresponded to i) a multi-layer feed-forward ANN combined with a parameter decreasing method (PDM-ANN), and ii) a multi-layer feed-forward ANN trained by a hybrid method (GA-ANN) which combines genetic algorithms and the popular back-propagation training algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim of this paper is to evaluate the diagnostic contribution of various types of texture features in discrimination of hepatic tissue in abdominal non-enhanced Computed Tomography (CT) images. Regions of Interest (ROIs) corresponding to the classes: normal liver, cyst, hemangioma, and hepatocellular carcinoma were drawn by an experienced radiologist. For each ROI, five distinct sets of texture features are extracted using First Order Statistics (FOS), Spatial Gray Level Dependence Matrix (SGLDM), Gray Level Difference Method (GLDM), Laws' Texture Energy Measures (TEM), and Fractal Dimension Measurements (FDM). In order to evaluate the ability of the texture features to discriminate the various types of hepatic tissue, each set of texture features, or its reduced version after genetic algorithm based feature selection, was fed to a feed-forward Neural Network (NN) classifier. For each NN, the area under Receiver Operating Characteristic (ROC) curves (Az) was calculated for all one-vs-all discriminations of hepatic tissue. Additionally, the total Az for the multi-class discrimination task was estimated. The results show that features derived from FOS perform better than other texture features (total Az: 0.802+/-0.083) in the discrimination of hepatic tissue.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper two models for the simulation of glucose-insulin metabolism of children with Type 1 diabetes are presented. The models are based on the combined use of Compartmental Models (CMs) and artificial Neural Networks (NNs). Data from children with Type 1 diabetes, stored in a database, have been used as input to the models. The data are taken from four children with Type 1 diabetes and contain information about glucose levels taken from continuous glucose monitoring system, insulin intake and food intake, along with corresponding time. The influences of taken insulin on plasma insulin concentration, as well as the effect of food intake on glucose input into the blood from the gut, are estimated from the CMs. The outputs of CMs, along with previous glucose measurements, are fed to a NN, which provides short-term prediction of glucose values. For comparative reasons two different NN architectures have been tested: a Feed-Forward NN (FFNN) trained with the back-propagation algorithm with adaptive learning rate and momentum, and a Recurrent NN (RNN), trained with the Real Time Recurrent Learning (RTRL) algorithm. The results indicate that the best prediction performance can be achieved by the use of RNN.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease." The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Im Bereich Medical Design spielen eine hohe Funktionalität und eine angenehme Handhabung eine grosse Rolle. In den Engineering-Projekten der Erdmann Design AG werden kühne Ideen in den Raum gesetzt die das Klima für Innovationen fördern. „Innovation entsteht aus elementarer Neugier und Lust auf eine bessere Zukunft“, sagt Raimund Erdmann. „Wir beraten mit unseren Feed Forward Methoden Start-up Firmen, Kleinunternehmen wie auch etliche, börsenkotierte, international aktive Unternehmen. Und das für excellentes Industrial Design, Corporate Design und Design Management“ mit den überzeugenden Möglichkeiten des Rapid Manufacturing.Im Bereich Medical Design spielen eine hohe Funktionalität und eine angenehme Handhabung eine grosse Rolle. In den Engineering-Projekten der Erdmann Design AG werden kühne Ideen in den Raum gesetzt die das Klima für Innovationen fördern. „Innovation entsteht aus elementarer Neugier und Lust auf eine bessere Zukunft“, sagt Raimund Erdmann. „Wir beraten mit unseren Feed Forward Methoden Start-up Firmen, Kleinunternehmen wie auch etliche, börsenkotierte, international aktive Unternehmen. Und das für excellentes Industrial Design, Corporate Design und Design Management“ mit den überzeugenden Möglichkeiten des Rapid Manufacturing.