979 resultados para fault model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rate- and state-dependent constitutive formulation for fault slip characterizes an exceptional variety of materials over a wide range of sliding conditions. This formulation provides a unified representation of diverse sliding phenomena including slip weakening over a characteristic sliding distance Dc, apparent fracture energy at a rupture front, time-dependent healing after rapid slip, and various other transient and slip rate effects. Laboratory observations and theoretical models both indicate that earthquake nucleation is accompanied by long intervals of accelerating slip. Strains from the nucleation process on buried faults generally could not be detected if laboratory values of Dc apply to faults in nature. However, scaling of Dc is presently an open question and the possibility exists that measurable premonitory creep may precede some earthquakes. Earthquake activity is modeled as a sequence of earthquake nucleation events. In this model, earthquake clustering arises from sensitivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and assigns physical interpretation to aftershock parameters. The seismicity formulation predicts large changes of earthquake probabilities result from stress changes. Two mechanisms for foreshocks are proposed that describe observed frequency of occurrence of foreshock-mainshock pairs by time and magnitude. With the first mechanism, foreshocks represent a manifestation of earthquake clustering in which the stress change at the time of the foreshock increases the probability of earthquakes at all magnitudes including the eventual mainshock. With the second model, accelerating fault slip on the mainshock nucleation zone triggers foreshocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the recent high-resolution laboratory experiments on propagating shear rupture, the constitutive law that governs shear rupture processes is discussed in view of the physical principles and constraints, and a specific constitutive law is proposed for shear rupture. It is demonstrated that nonuniform distributions of the constitutive law parameters on the fault are necessary for creating the nucleation process, which consists of two phases: (i) a stable, quasistatic phase, and (ii) the subsequent accelerating phase. Physical models of the breakdown zone and the nucleation zone are presented for shear rupture in the brittle regime. The constitutive law for shear rupture explicitly includes a scaling parameter Dc that enables one to give a common interpretation to both small scale rupture in the laboratory and large scale rupture as earthquake source in the Earth. Both the breakdown zone size Xc and the nucleation zone size L are prescribed and scaled by Dc, which in turn is prescribed by a characteristic length lambda c representing geometrical irregularities of the fault. The models presented here make it possible to understand the earthquake generation process from nucleation to unstable, dynamic rupture propagation in terms of physics. Since the nucleation process itself is an immediate earthquake precursor, deep understanding of the nucleation process in terms of physics is crucial for the short-term (or immediate) earthquake prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We summarize studies of earthquake fault models that give rise to slip complexities like those in natural earthquakes. For models of smooth faults between elastically deformable continua, it is critical that the friction laws involve a characteristic distance for slip weakening or evolution of surface state. That results in a finite nucleation size, or coherent slip patch size, h*. Models of smooth faults, using numerical cell size properly small compared to h*, show periodic response or complex and apparently chaotic histories of large events but have not been found to show small event complexity like the self-similar (power law) Gutenberg-Richter frequency-size statistics. This conclusion is supported in the present paper by fully inertial elastodynamic modeling of earthquake sequences. In contrast, some models of locally heterogeneous faults with quasi-independent fault segments, represented approximately by simulations with cell size larger than h* so that the model becomes "inherently discrete," do show small event complexity of the Gutenberg-Richter type. Models based on classical friction laws without a weakening length scale or for which the numerical procedure imposes an abrupt strength drop at the onset of slip have h* = 0 and hence always fall into the inherently discrete class. We suggest that the small-event complexity that some such models show will not survive regularization of the constitutive description, by inclusion of an appropriate length scale leading to a finite h*, and a corresponding reduction of numerical grid size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although models of homogeneous faults develop seismicity that has a Gutenberg-Richter distribution, this is only a transient state that is followed by events that are strongly influenced by the nature of the boundaries. Models with geometrical inhomogeneities of fracture thresholds can limit the sizes of earthquakes but now favor the characteristic earthquake model for large earthquakes. The character of the seismicity is extremely sensitive to distributions of inhomogeneities, suggesting that statistical rules for large earthquakes in one region may not be applicable to large earthquakes in another region. Model simulations on simple networks of faults with inhomogeneities of threshold develop episodes of lacunarity on all members of the network. There is no validity to the popular assumption that the average rate of slip on individual faults is a constant. Intermediate term precursory activity such as local quiescence and increases in intermediate-magnitude activity at long range are simulated well by the assumption that strong weakening of faults by injection of fluids and weakening of asperities on inhomogeneous models of fault networks is the dominant process; the heat flow paradox, the orientation of the stress field, and the low average stress drop in some earthquakes are understood in terms of the asperity model of inhomogeneous faulting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a 3D geometric model of growth strata cropping out in a fault-propagation fold associated with the Crevillente Fault (Abanilla-Alicante sector) from the Bajo Segura Basin (eastern Betic Cordillera, southern Spain). The analysis of this 3D model enables us to unravel the along-strike and along-section variations of the growth strata, providing constraints to assess the fold development, and hence, the fault kinematic evolution in space and time. We postulate that the observed along-strike dip variations are related to lateral variation in fault displacement. Along-section variations of the progressive unconformity opening angles indicate greater fault slip in the upper Tortonian–Messinian time span; from the Messinian on, quantitative analysis of the unconformity indicate a constant or lower tectonic activity of the Crevillente Fault (Abanilla-Alicante sector); the minor abundance of striated pebbles in the Pliocene-Quaternary units could be interpreted as a decrease in the stress magnitude and consequently in the tectonic activity of the fault. At a regional scale, comparison of the growth successions cropping out in the northern and southern limits of the Bajo Segura Basin points to a southward migration of deformation in the basin. This means that the Bajo Segura Fault became active after the Crevillente Fault (Abanilla-Alicante sector), for which activity on the latter was probably decreasing according to our data. Consequently, we propose that the seismic hazard at the northern limit of the Bajo Segura Basin should be lower than at the southern limit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the development of the embedded application and driving assistance systems, it becomes relevant to develop parallel mechanisms in order to check and to diagnose these new systems. In this thesis we focus our research on one of this type of parallel mechanisms and analytical redundancy for fault diagnosis of an automotive suspension system. We have considered a quarter model car passive suspension model and used a parameter estimation, ARX model, method to detect the fault happening in the damper and spring of system. Moreover, afterward we have deployed a neural network classifier to isolate the faults and identifies where the fault is happening. Then in this regard, the safety measurements and redundancies can take into the effect to prevent failure in the system. It is shown that The ARX estimator could quickly detect the fault online using the vertical acceleration and displacement sensor data which are common sensors in nowadays vehicles. Hence, the clear divergence is the ARX response make it easy to deploy a threshold to give alarm to the intelligent system of vehicle and the neural classifier can quickly show the place of fault occurrence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analogue model experiments using both brittle and viscous materials were performed to investigate the development and interaction of strike-slip faults in zones of distributed shear deformation. At low strain, bulk dextral shear deformation of an initial rectangular model is dominantly accommodated by left-stepping, en echelon strike-slip faults (Riedel shears, R) that form in response to the regional (bulk) stress field. Push-up zones form in the area of interaction between adjacent left-stepping Riedel shears. In cross sections, faults bounding push-up zones have an arcuate shape or merge at depth. Adjacent left-stepping R shears merge by sideways propagation or link by short synthetic shears that strike subparallel to the bulk shear direction. Coalescence of en echelon R shears results in major, through-going faults zones (master faults). Several parallel master faults develop due to the distributed nature of deformation. Spacing between master faults is related to the thickness of the brittle layers overlying the basal viscous layer. Master faults control to a large extent the subsequent fault pattern. With increasing strain, relatively short antithetic and synthetic faults develop mostly between old, but still active master faults. The orientation and evolution of the new faults indicate local modifications of the stress field. In experiments lacking lateral borders, closely spaced parallel antithetic faults (cross faults) define blocks that undergo clockwise rotation about a vertical axis with continuing deformation. Fault development and fault interaction at different stages of shear strain in our models show similarities with natural examples that have undergone distributed shear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phenomenon of strain localisation is often observed in shear deformation of particulate materials, e.g., fault gouge. This phenomenon is usually attributed to special types of plastic behaviour of the material (e.g., strain softening or mismatch between dilatancy and pressure sensitivity or both). Observations of strain localisation in situ or in experiments are usually based on displacement measurements and subsequent computation of the displacement gradient. While in conventional continua the symmetric part of the displacement gradient is equal to the strain, it is no longer the case in the more realistic descriptions within the framework of generalised continua. In such models the rotations of the gouge particles are considered as independent degrees of freedom the values of which usually differ from the rotation of an infinitesimal volume element of the continuum, the latter being described for infinitesimal deformations by the non-symmetric part of the displacement gradient. As a model for gouge material we propose a continuum description for an assembly of spherical particles of equal radius in which the particle rotation is treated as an independent degree of freedom. Based on this model we consider simple shear deformations of the fault gouge. We show that there exist values of the model parameters for which the displacement gradient exhibits a pronounced localisation at the mid-layers of the fault, even in the absence of inelasticity. Inelastic effects are neglected in order to highlight the role of the independent rotations and the associated additional parameters. The localisation-like behaviour occurs if (a) the particle rotations on the boundary of the shear layer are constrained (this type of boundary condition does not exist in a standard continuum) and (b) the contact moment-or bending stiffness is much smaller than the product of the effective shear modulus of the granulate and the square of the width of the gouge layer. It should be noted however that the virtual work functional is positive definite over the range of physically meaningful parameters (here: contact stiffnesses, solid volume fraction and coordination number) so that strictly speaking we are not dealing with a material instability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earthquakes have been recognized as resulting from stick-slip frictional instabilities along the faults between deformable rocks. A three-dimensional finite-element code for modeling the nonlinear frictional contact behaviors between deformable bodies with the node-to-point contact element strategy has been developed and applied here to investigate the fault geometry influence on the nucleation and development process of the stick-slip instability along an intra-plate fault through a typical fault bend model, which has a pre-cut fault that is artificially bent by an angle of 5.6degrees at the fault center. The numerical results demonstrate that the geometry of the fault significantly affects nucleation, termination and restart of the stick-slip instability along the intra-plate fault, and all these instability phenomena can be well simulated using the current finite-element algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An appreciation of the physical mechanisms which cause observed seismicity complexity is fundamental to the understanding of the temporal behaviour of faults and single slip events. Numerical simulation of fault slip can provide insights into fault processes by allowing exploration of parameter spaces which influence microscopic and macroscopic physics of processes which may lead towards an answer to those questions. Particle-based models such as the Lattice Solid Model have been used previously for the simulation of stick-slip dynamics of faults, although mainly in two dimensions. Recent increases in the power of computers and the ability to use the power of parallel computer systems have made it possible to extend particle-based fault simulations to three dimensions. In this paper a particle-based numerical model of a rough planar fault embedded between two elastic blocks in three dimensions is presented. A very simple friction law without any rate dependency and no spatial heterogeneity in the intrinsic coefficient of friction is used in the model. To simulate earthquake dynamics the model is sheared in a direction parallel to the fault plane with a constant velocity at the driving edges. Spontaneous slip occurs on the fault when the shear stress is large enough to overcome the frictional forces on the fault. Slip events with a wide range of event sizes are observed. Investigation of the temporal evolution and spatial distribution of slip during each event shows a high degree of variability between the events. In some of the larger events highly complex slip patterns are observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The particle-based lattice solid model developed to study the physics of rocks and the nonlinear dynamics of earthquakes is refined by incorporating intrinsic friction between particles. The model provides a means for studying the causes of seismic wave attenuation, as well as frictional heat generation, fault zone evolution, and localisation phenomena. A modified velocity-Verlat scheme that allows friction to be precisely modelled is developed. This is a difficult computational problem given that a discontinuity must be accurately simulated by the numerical approach (i.e., the transition from static to dynamical frictional behaviour). This is achieved using a half time step integration scheme. At each half time step, a nonlinear system is solved to compute the static frictional forces and states of touching particle-pairs. Improved efficiency is achieved by adaptively adjusting the time step increment, depending on the particle velocities in the system. The total energy is calculated and verified to remain constant to a high precision during simulations. Numerical experiments show that the model can be applied to the study of earthquake dynamics, the stick-slip instability, heat generation, and fault zone evolution. Such experiments may lead to a conclusive resolution of the heat flow paradox and improved understanding of earthquake precursory phenomena and dynamics. (C) 1999 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past years, the paradigm of component-based software engineering has been established in the construction of complex mission-critical systems. Due to this trend, there is a practical need for techniques that evaluate critical properties (such as safety, reliability, availability or performance) of these systems. In this paper, we review several high-level techniques for the evaluation of safety properties for component-based systems and we propose a new evaluation model (State Event Fault Trees) that extends safety analysis towards a lower abstraction level. This model possesses a state-event semantics and strong encapsulation, which is especially useful for the evaluation of component-based software systems. Finally, we compare the techniques and give suggestions for their combined usage

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The initial aim of this research was to investigate the application of expert Systems, or Knowledge Base Systems technology to the automated synthesis of Hazard and Operability Studies. Due to the generic nature of Fault Analysis problems and the way in which Knowledge Base Systems work, this goal has evolved into a consideration of automated support for Fault Analysis in general, covering HAZOP, Fault Tree Analysis, FMEA and Fault Diagnosis in the Process Industries. This thesis described a proposed architecture for such an Expert System. The purpose of the System is to produce a descriptive model of faults and fault propagation from a description of the physical structure of the plant. From these descriptive models, the desired Fault Analysis may be produced. The way in which this is done reflects the complexity of the problem which, in principle, encompasses the whole of the discipline of Process Engineering. An attempt is made to incorporate the perceived method that an expert uses to solve the problem; keywords, heuristics and guidelines from techniques such as HAZOP and Fault Tree Synthesis are used. In a truly Expert System, the performance of the system is strongly dependent on the high quality of the knowledge that is incorporated. This expert knowledge takes the form of heuristics or rules of thumb which are used in problem solving. This research has shown that, for the application of fault analysis heuristics, it is necessary to have a representation of the details of fault propagation within a process. This helps to ensure the robustness of the system - a gradual rather than abrupt degradation at the boundaries of the domain knowledge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Requirements for systems to continue to operate satisfactorily in the presence of faults has led to the development of techniques for the construction of fault tolerant software. This thesis addresses the problem of error detection and recovery in distributed systems which consist of a set of communicating sequential processes. A method is presented for the `a priori' design of conversations for this class of distributed system. Petri nets are used to represent the state and to solve state reachability problems for concurrent systems. The dynamic behaviour of the system can be characterised by a state-change table derived from the state reachability tree. Systematic conversation generation is possible by defining a closed boundary on any branch of the state-change table. By relating the state-change table to process attributes it ensures all necessary processes are included in the conversation. The method also ensures properly nested conversations. An implementation of the conversation scheme using the concurrent language occam is proposed. The structure of the conversation is defined using the special features of occam. The proposed implementation gives a structure which is independent of the application and is independent of the number of processes involved. Finally, the integrity of inter-process communications is investigated. The basic communication primitives used in message passing systems are seen to have deficiencies when applied to systems with safety implications. Using a Petri net model a boundary for a time-out mechanism is proposed which will increase the integrity of a system which involves inter-process communications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research explores Bayesian updating as a tool for estimating parameters probabilistically by dynamic analysis of data sequences. Two distinct Bayesian updating methodologies are assessed. The first approach focuses on Bayesian updating of failure rates for primary events in fault trees. A Poisson Exponentially Moving Average (PEWMA) model is implemnented to carry out Bayesian updating of failure rates for individual primary events in the fault tree. To provide a basis for testing of the PEWMA model, a fault tree is developed based on the Texas City Refinery incident which occurred in 2005. A qualitative fault tree analysis is then carried out to obtain a logical expression for the top event. A dynamic Fault Tree analysis is carried out by evaluating the top event probability at each Bayesian updating step by Monte Carlo sampling from posterior failure rate distributions. It is demonstrated that PEWMA modeling is advantageous over conventional conjugate Poisson-Gamma updating techniques when failure data is collected over long time spans. The second approach focuses on Bayesian updating of parameters in non-linear forward models. Specifically, the technique is applied to the hydrocarbon material balance equation. In order to test the accuracy of the implemented Bayesian updating models, a synthetic data set is developed using the Eclipse reservoir simulator. Both structured grid and MCMC sampling based solution techniques are implemented and are shown to model the synthetic data set with good accuracy. Furthermore, a graphical analysis shows that the implemented MCMC model displays good convergence properties. A case study demonstrates that Likelihood variance affects the rate at which the posterior assimilates information from the measured data sequence. Error in the measured data significantly affects the accuracy of the posterior parameter distributions. Increasing the likelihood variance mitigates random measurement errors, but casuses the overall variance of the posterior to increase. Bayesian updating is shown to be advantageous over deterministic regression techniques as it allows for incorporation of prior belief and full modeling uncertainty over the parameter ranges. As such, the Bayesian approach to estimation of parameters in the material balance equation shows utility for incorporation into reservoir engineering workflows.