996 resultados para fast axis
Resumo:
This paper presents the modeling and motion-sensorless direct torque and flux control of a novel dual-airgap axial-flux permanent-magnet machine optimized for use in flywheel energy storage system (FESS) applications. Independent closed-loop torque and stator flux regulation are performed in the stator flux ( x-y) reference frame via two PI controllers. This facilitates fast torque dynamics, which is critical as far as energy charging/discharging in the FESS is concerned. As FESS applications demand high-speed operation, a new field-weakening algorithm is proposed in this paper. Flux weakening is achieved autonomously once the y-axis voltage exceeds the available inverter voltage. An inherently speed sensorless stator flux observer immune to stator resistance variations and dc-offset effects is also proposed for accurate flux and speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a machine prototype.
Resumo:
A simple, fast, energy and labour efficient, carbon dot synthesis method involving only the mixing of a saccharide and base is presented. Uniform, green luminescent carbon dots with an average size of 3.5 nm were obtained, without the need for additional energy input or external heating. Detection of formation moment for fructose-NaOH-produced carbon dots is also presented.
Resumo:
The possibility of fast, narrow-size/chirality nucleation of thin single-walled carbon nanotubes (SWCNTs) at low, device-tolerant process temperatures in a plasma-enhanced chemical vapor deposition (CVD) is demonstrated using multiphase, multiscale numerical experiments. These effects are due to the unique nanoscale reactive plasma chemistry (NRPC) on the surfaces and within Au catalyst nanoparticles. The computed three-dimensional process parameter maps link the nanotube incubation times and the relative differences between the incubation times of SWCNTs of different sizes/chiralities to the main plasma- and precursor gas-specific parameters and explain recent experimental observations. It is shown that the unique NRPC leads not only to much faster nucleation of thin nanotubes at much lower process temperatures, but also to better selectivity between the incubation times of SWCNTs with different sizes and chiralities, compared to thermal CVD. These results are used to propose a time-programmed kinetic approach based on fast-responding plasmas which control the size-selective, narrow-chirality nucleation and growth of thin SWCNTs. This approach is generic and can be used for other nanostructure and materials systems.
Resumo:
The endothelins and their associated receptors are important controllers of vascular growth, inflammation and vascular tone. In cancer, they have roles in the control of numerous factors in cancer development and progression, including angiogenesis, stromal reaction, epithelial mesenchymal transitions, apoptosis, invasion, metastases and drug resistance. Also, we consider current information on the role of this signalling system in cancer and examine the state of the current cell, animal and clinical trials utilizing endothelin targeted drugs for cancer management. Although targeting the endothelin axis in cell lines and xenografts show some promise in retarding cellular growth, results from limited clinical trials in prostatic cancer are less encouraging and did not offer significant survival benefit. The ability to target both cancer cells and vasculature via endothelin is an important consideration that necessitates the further refining of therapeutic strategies as we continue to explore the possibilities of the endothelin axis in cancer treatment.
Resumo:
Chemoresistance is a major therapeutic challenge to overcome in NSCLC, in order to improve the current survival rates of <15% at 5 years. We and others have shown increased PI3K signaling in NSCLC to be associated with a more aggressive disease, and a poorer prognosis. In this study, targeted inhibition of three strategic points of the PI3K–NFκB axis was performed with the aim of exploiting vulnerabilities in cisplatin-resistant NSCLC cells. Cisplatin-resistant cell lines were previously generated through prolonged exposure to the drug. Expression of PI3K and NFκB pathway-related genes were compared between cisplatin-resistant cells and their matched parent cells using a gene expression array, qRT-PCR, DNA sequencing, western blot, and immunofluorescence. Targeted inhibition was performed using GDC-0980, a dual PI3K–mTOR inhibitor currently in Phase II clinical trials in NSCLC, and DHMEQ, an inhibitor of NFκB translocation which has been used extensively both in vitro and in vivo. Effects of the two inhibitors were assessed by BrdU proliferation assay and multiparameter viability assay. NFKBIA was shown to be 12-fold overexpressed in cisplatin-resistant cells, with no mutations present in exons 3, 4, or 5 of the gene. Corresponding overexpression of IκBα was also observed. Treatment with DHMEQ (but not GDC-0980) led to significantly enhanced effects on viability and proliferation in cisplatin-resistant cells compared with parent cells. We conclude that NFκB inhibition represents a more promising strategy than PI3K–mTOR inhibition for treatment in the chemoresistance setting in NSCLC.
Resumo:
Handover performance is critical to support real-time traffic applications in wireless network communications. The longer the handover delay is, the longer an Mobile Node (MN) is prevented from sending and receiving any data packet. In real-time network communication applications, such as VoIP and video-conference, a long handover delay is often unacceptable. In order to achieve better handover performance, Fast Proxy Mobile IPv6 (FPMIPv6) has been standardised as an improvement to the original Proxy Mobile IPv6 (PMIPv6) in the Internet Engineering Task Force (IETF). The FPMIPv6 adopts a link layer triggering mechanism to perform two modes of operation: predictive and reactive modes. Using the link layer triggering, the handover performance of the FPMIPv6 can be improved in the predictive mode. However, an unsuccessful predictive handover operation will lead to activation of a reactive handover. In the reactive mode, MNs still experience long handover delays and a large amount of packet loss, which significantly degrade the handover performance of the FPMIPv6. Addressing this problem, this thesis presents an Enhanced Triggering Mechanism (ETM) in the FPMIPv6 to form an enhanced FPMIPv6 (eFPMIPv6). The ETM reduces the most time consuming processes in the reactive handover: the failed Handover Initiate (HO-Initiate) delay and bidirectional tunnel establishment delay. Consequently, the overall handover performance of the FPMIPv6 is enhanced in the eFPMIPv6. To show the advantages of the proposed eFPMIPv6, a theoretical analysis is carried out to mathematically model the performance of PMIPv6, FPMIPv6 and eFPMIPv6. Extensive case studies are conducted to validate the effectiveness of the presented eFPMIPv6 mechanism. They are carried out under various scenarios with changes in network link delay, traffic load, number of hops and MN moving velocity. The case studies show that the proposed mechanism ETM reduces the reactive handover delay, and the presented eFPMIPv6 outperforms the PMIPv6 and FPMIPv6 in terms of the overall handover performance.
Resumo:
This project characterised the bone microarchitecture of adult mice lacking the hormone, acyl ghrelin, by high resolution micro-computed tomography; and investigated the expression of the ghrelin axis in cells of human and mouse fetal cartilage. This thesis highlights for the first time the physiological role of the ghrelin axis in the bone microenvironment of aged mice. Furthermore it improves our understanding of the complex expression patterns of the ghrelin axis in cartilage cells of human and mouse fetal skeletons.
Resumo:
This paper examines the approach of Guilbert, a European stationery company, which has chosen a fast track strategy towards implementation of enterprise resource planning.
Resumo:
Glucocorticoid hormones are critical to respond and adapt to stress. Genetic variations in the glucocorticoid receptor (GR) gene alter hypothalamic-pituitary-adrenal (HPA) axis activity and associate with hypertension and susceptibility to metabolic disease. Here we test the hypothesis that reduced GR density alters blood pressure and glucose and lipid homeostasis and limits adaption to obesogenic diet. Heterozygous GR βgeo/+ mice were generated from embryonic stem (ES) cells with a gene trap integration of a β-galactosidase-neomycin phosphotransferase (βgeo) cassette into the GR gene creating a transcriptionally inactive GR fusion protein. Although GRβgeo/+ mice have 50% less functional GR, they have normal lipid and glucose homeostasis due to compensatory HPA axis activation but are hypertensive due to activation of the renin-angiotensin- aldosterone system (RAAS). When challenged with a high-fat diet, weight gain, adiposity, and glucose intolerance were similarly increased in control and GRβgeo/+ mice, suggesting preserved control of intermediary metabolism and energy balance. However, whereas a high-fat diet caused HPA activation and increased blood pressure in control mice, these adaptions were attenuated or abolished in GRβgeo/+ mice. Thus, reduced GR density balanced by HPA activation leaves glucocorticoid functions unaffected but mineralocorticoid functions increased, causing hypertension. Importantly, reduced GR limits HPA and blood pressure adaptions to obesogenic diet.
Resumo:
Purpose: We term the visual field position from which the pupil appears most nearly circular as the pupillary circular axis (PCAx). The aim was to determine and compare the horizontal and vertical co-ordinates of the PCAx and optical axis from pupil shape and refraction information for only the horizontal meridian of the visual field. Method: The PCAx was determined from the changes with visual field angle in the ellipticity and orientation of pupil images out to ±90° from fixation along the horizontal meridian for the right eyes of 30 people. This axis was compared with the optical axis determined from the changes in the astigmatic components of the refractions for field angles out to ±35° in the same meridian. Results: The mean estimated horizontal and vertical field coordinates of the PCAx were (‒5.3±1.9°, ‒3.2±1.5°) compared with (‒4.8±5.1°, ‒1.5±3.4°) for the optical axis. The vertical co-ordinates of the two axes were just significantly different (p =0.03) but there was no significant correlation between them. Only the horizontal coordinate of the PCAx was significantly related to the refraction in the group. Conclusion: On average, the PCAx is displaced from the line-of-sight by about the same angle as the optical axis but there is more inter-subject variation in the position of the optical axis. When modelling the optical performance of the eye, it appears reasonable to assume that the pupil is circular when viewed along the line-of-sight.
Resumo:
Biofuel produced by fast pyrolysis from biomass is a promising candidate. The heart of the system is a reactor which is directly or indirectly heated to approximately 500°C by exhaust gases from a combustor that burns pyrolysis gas and some of the by-product char. In most of the cases, external biomass heater is used as heating source of the system while internal electrical heating is recently implemented as source of reactor heating. However, this heating system causes biomass or other conventional forms of fuel consumption to produce renewable energy and contributes to environmental pollution. In order to overcome these, the feasibility of incorporating solar energy with fast pyrolysis has been investigated. The main advantages of solar reactor heating include renewable source of energy, comparatively simpler devices, and no environmental pollution. A lab scale pyrolysis setup has been examined along with 1.2 m diameter parabolic reflector concentrator that provides hot exhaust gas up to 162°C. The study shows that about 32.4% carbon dioxide (CO2) emissions and almost one-third portion of fuel cost are reduced by incorporating solar heating system. Successful implementation of this proposed solar assisted pyrolysis would open a prospective window of renewable energy.
Resumo:
The creation of a commercially viable and a large-scale purification process for plasmid DNA (pDNA) production requires a whole-systems continuous or semi-continuous purification strategy employing optimised stationary adsorption phase(s) without the use of expensive and toxic chemicals, avian/bovine-derived enzymes and several built-in unit processes, thus affecting overall plasmid recovery, processing time and economics. Continuous stationary phases are known to offer fast separation due to their large pore diameter making large molecule pDNA easily accessible with limited mass transfer resistance even at high flow rates. A monolithic stationary sorbent was synthesised via free radical liquid porogenic polymerisation of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with surface and pore characteristics tailored specifically for plasmid binding, retention and elution. The polymer was functionalised with an amine active group for anion-exchange purification of pDNA from cleared lysate obtained from E. coli DH5α-pUC19 pellets in RNase/protease-free process. Characterization of the resin showed a unique porous material with 70% of the pores sizes above 300 nm. The final product isolated from anion-exchange purification in only 5 min was pure and homogenous supercoiled pDNA with no gDNA, RNA and protein contamination as confirmed with DNA electrophoresis, restriction analysis and SDS page. The resin showed a maximum binding capacity of 15.2 mg/mL and this capacity persisted after several applications of the resin. This technique is cGMP compatible and commercially viable for rapid isolation of pDNA.