952 resultados para far infrared laser
Resumo:
The phototherapy effects in the skin are related to biomodulation, usually to accelerate wound healing. However, there is no direct proof of the interrelation between the effects of low-level laser therapy (LLLT) and light-emitting diode (LED) in neuropeptide secretion, these substances being prematurely involved in the neurogenic inflammation phase of wound healing. This study therefore focused on investigating LLLT and LED in Calcitonin gene-related peptide (CGRP) and substance P (SP) secretion in healthy rat skin. Forty rats were randomly distributed into five groups with eight rats each: Control Group, Blue LED Group (470 nm, 350 mW power), Red LED Group (660 nm, 350 mW power), Red Laser Group (660 nm, 100 mW power), and Infrared Laser Group (808 nm, 100 mW power) (DMCA (R) Equipamentos Ltda., So Carlos, So Paulo, Brazil). the skin of the animals in the experimental groups was irradiated using the punctual contact technique, with a total energy of 40 J, single dose, standardized at one point in the dorsal region. After 14 min of irradiation, the skin samples were collected for CGRP and SP quantification using western blot analysis. SP was released in Infrared Laser Group (p = 0.01); there was no difference in the CGRP secretion among groups. Infrared (808 nm) LLLT enhances neuropeptide SP secretion in healthy rat skin.
Resumo:
Visible and near-infrared laser light pulses were coupled into two different types of optical fiber cavities. One cavity consisted of a short strand of fiber waveguide that contained two identical fiber Bragg gratings. Another cavity was made using a loop of optical fiber. In either cavity ∼ 40 ps laser pulses, which were generated using a custom-built gainswitched diode laser, circulated for a large number of round trips. The optical loss of either cavity was determined from the ring-down times. Cavity ring-down spectroscopy was performed on 200 pL volumes of liquid samples that were injected into the cavities using a 100 μm gap in the fiber loop. A detection limit of 20 ppm of methylene blue dye in aqueous solution, corresponding to a minimum absorptivity of εC < 6 cm−1, was realized.
Resumo:
A novel technique is proposed to control the dissociation mechanism of small diatomic molecules. This technique, relying upon the creation of a coherent nuclear wavepacket, uses intense (> 10(14) W cm(-2)), ultrashort (similar to 10 fs) infrared laser pulses in a pump and probe scheme. In applying this technique to D-2(+) good agreement has been observed between a quantum simulation and experiment. This represents a major step towards quantum state control in molecules, using optical fields.
Resumo:
A quasi-classical model (QCM) of nuclear wavepacket generation, modification and imaging by three intense ultrafast near-infrared laser pulses has been developed. Intensities in excess of 10(13) W cm(-2) are studied, the laser radiation is non-resonant and pulse durations are in the few-cycle regime, hence significantly removed from the conditions typical of coherent control and femtochemistry. The 1s sigma ground state of the D-2 precursor is projected onto the available electronic states in D-2(+) (1s sigma(g) ground and 2p sigma(u) dissociative) and D+ + D+ (Coulomb explosion) by tunnel ionization by an ultrashort 'pump' pulse, and relative populations are found numerically. A generalized non-adiabatic treatment allows the dependence of the initial vibrational population distribution on laser intensity to be calculated. The wavepacket is approximated as a classical ensemble of particles moving on the 1s sigma(g) potential energy surface (PES), and hence follow trajectories of different amplitudes and frequencies depending on the initial vibrational state. The 'control' pulse introduces a time-dependent polarization of the molecular orbital, causing the PES to be modified according to the dynamic Stark effect and the transition dipole. The trajectories adjust in amplitude, frequency and phase-offset as work is done on or by the resulting force; comparing the perturbed and unperturbed trajectories allows the final vibrational state populations and phases to be determined. The action of the 'probe' pulse is represented by a discrete internuclear boundary, such that elements of the ensemble at a larger internuclear separation are assumed to be photodissociated. The vibrational populations predicted by the QCM are compared to recent quantum simulations (Niederhausen and Thumm 2008 Phys. Rev. A 77 013404), and a remarkable agreement has been found. The applicability of this model to femtosecond and attosecond time-scale experiments is discussed and the relation to established femtochemistry and coherent control techniques are explored.
Resumo:
We present a simple quantum mechanical model to describe Coulomb explosion of H-2(+) and D-2(+) by short, intense infrared laser pulses. The model is based on the length gauge version of the molecular strong-field approximation and is valid when the process of dissociation prior to ionization is negligible. The results are compared with recent experimental data for the proton kinetic energy spectrum [Th. Ergler , Phys. Rev. Lett. 95, 093001 (2005); D. S. Murphy , J. Phys. B 40, S359 (2007)]. Using a Franck-Condon distribution over initial vibrational states, the theory reproduces the overall shape of the spectrum with only a small overestimation of slow protons. The agreement between theory and experiment can be made perfect by using a non-Frank-Condon initial distribution characteristic for H-2(+) (D-2(+)) targets produced by strong-field ionization of H-2 (D-2). For comparison, we also present results obtained by two different tunneling models for this process.
Resumo:
Laser-driven coherent extreme-ultraviolet (XUV) sources provide pulses lasting a few hundred attoseconds(1,2), enabling real-time access to dynamic changes of the electronic structure of matter(3,4), the fastest processes outside the atomic nucleus. These pulses, however, are typically rather weak. Exploiting the ultrahigh brilliance of accelerator-based XUV sources(5) and the unique time structure of their laser-based counterparts would open intriguing opportunities in ultrafast X-ray and high-field science, extending powerful nonlinear optical and pump-probe techniques towards X-ray frequencies, and paving the way towards unequalled radiation intensities. Relativistic laser-plasma interactions have been identified as a promising approach to achieve this goal(6-13). Recent experiments confirmed that relativistically driven overdense plasmas are able to convert infrared laser light into harmonic XUV radiation with unparalleled efficiency, and demonstrated the scalability of the generation technique towards hard X-rays(14-19). Here we show that the phases of the XUV harmonics emanating from the interaction processes are synchronized, and therefore enable attosecond temporal bunching. Along with the previous findings concerning energy conversion and recent advances in high-power laser technology, our experiment demonstrates the feasibility of confining unprecedented amounts of light energy to within less than one femtosecond.
Resumo:
Amplification of spontaneous emission (ASE) at 23.6 nm has been studied in a Ge plasma heated by a 1 TW infrared laser pulse. The exponent of the axial gain reached 21 in a geometry with Fresnel number less-than-or-equal-to 1. Two plasma columns of combined length up to 36 mm were used with an extreme ultraviolet mirror giving double-pass amplification. Saturation of the ASE output was observed. The beam divergence was about 8 x diffraction limited with a brightness estimated at 10(14) W cm-2 sr-1. The feedback from the mirror was significantly reduced probably by radiation damage from the plasma.
Resumo:
Efficient guiding of 1-ps infrared laser pulses with power exceeding 10 TW has been demonstrated through hollow capillary tubes with 40- and 100-mu m internal diameters and lengths up to 10 mm, with transmission greater than 80% of the incident energy coupled into the capillary. The beam is guided via multiple reflections off a plasma formed on the walls of the guide by the pulse's rising edge, as inferred from optical probe measurements.
Resumo:
A system comprised of a Bomem interferometer and a LT3-110 Heli-Tran cryostat was set up to measure the reflectance of materials in the mid-infrared spectral region. Several tests were conducted to ensure the consistency and reliability of the system. Silicon and Chromium, two materials with well known optical properties were measured to test the accuracy of the system, and the results were found to be in good agreement with the literature. Reflectance measurements on pure SnTe and several Pb and Mn-doped alloys were carried out. These materials were chosen because they exhibit a strong plasma edge in the mid infrared region. The optical conductivity and several related optical parameters were calculated from the measured reflectance. Very low temperature measurements were carried out in the far-infrared on Sn9SMn2Te, and the results are indicative of a spin glass phase at 0.8 K. Resistivity measurements were made at room temperature. The resistivity values were found, as expected, to decrease with increasing carrier concentration and to increase with increasing manganese concentration.
Resumo:
Measurements of the optical reflectivity of the normal incident light along c-axis [0001] have been made on a Gadolinium single crystal, for temperatures between 50 K and room temperature just above the Curie temperature of Gd, which is 293 K. And covering the spectrum range between 100 -11000 cm-I . This work is the first study of Gd in the far infrared range. In fact it fills the gap below 0.2 eV which has never been measured before. Extreme attention was paid to the fact that Gadolinium is a very reactive metal with air. Thus, the sample was mechanically polished and carefully handled during the measurement. However, temperature dependent optical measurements have been made in the same frequency range for a sample of Gd2O3. For comparison, both samples of Gd and Gd2O3 were examined by X-Ray diffraction. XRD analysis showed that the sample was pure gadolinium and the oxide layer either does not exist, or is very thin. Furthermore, this fact was supported by the absence of any of Gd2O3 features in the Gd sample reflectivity. Kramers Kronig analysis was applied to extract the optical functions from the reflectance data. The optical conductivity shows a strong temperature dependence feature in the mid-infrared. This feature disappears completely at room temperature which supports a magnetic origin.
Resumo:
In this paper we show that the orthorhombic phase of FeSi2 (stable at room temperature) displays a sizable anisotropy in the infrared spectra, with minor effects in the Raman data too. This fact is not trivial at all, since the crystal structure corresponds to a moderate distortion of the fluorite symmetry. Our analysis is carried out on small single crystals grown by flux transport, through polarization-resolved far-infrared reflectivity and Raman measurements. Their interpretation has been obtained by means of the simulated spectra with tight-binding molecular dynamics.
Resumo:
As improvements to the optical design of spectrometer and radiometer instruments evolve with advances in detector sensitivity, use of focal plane detector arrays and innovations in adaptive optics for large high altitude telescopes, interest in mid-infrared astronomy and remote sensing applications have been areas of progressive research in recent years. This research has promoted a number of developments in infrared coating performance, particularly by placing increased demands on the spectral imaging requirements of filters to precisely isolate radiation between discrete wavebands and improve photometric accuracy. The spectral design and construction of multilayer filters to accommodate these developments has subsequently been an area of challenging thin-film research, to achieve high spectral positioning accuracy, environmental durability and aging stability at cryogenic temperatures, whilst maximizing the far-infrared performance. In this paper we examine the design and fabrication of interference filters in instruments that utilize the mid-infrared N-band (6-15 µm) and Q-band (16-28 µm) atmospheric windows, together with a rationale for the selection of materials, deposition process, spectral measurements and assessment of environmental durability performance.
Resumo:
Techniques for the coherent generation and detection of electromagnetic radiation in the far infrared, or terahertz, region of the electromagnetic spectrum have recently developed rapidly and may soon be applied for in vivo medical imaging. Both continuous wave and pulsed imaging systems are under development, with terahertz pulsed imaging being the more common method. Typically a pump and probe technique is used, with picosecond pulses of terahertz radiation generated from femtosecond infrared laser pulses, using an antenna or nonlinear crystal. After interaction with the subject either by transmission or reflection, coherent detection is achieved when the terahertz beam is combined with the probe laser beam. Raster scanning of the subject leads to an image data set comprising a time series representing the pulse at each pixel. A set of parametric images may be calculated, mapping the values of various parameters calculated from the shape of the pulses. A safety analysis has been performed, based on current guidelines for skin exposure to radiation of wavelengths 2.6 µm–20 mm (15 GHz–115 THz), to determine the maximum permissible exposure (MPE) for such a terahertz imaging system. The international guidelines for this range of wavelengths are drawn from two U.S. standards documents. The method for this analysis was taken from the American National Standard for the Safe Use of Lasers (ANSI Z136.1), and to ensure a conservative analysis, parameters were drawn from both this standard and from the IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields (C95.1). The calculated maximum permissible average beam power was 3 mW, indicating that typical terahertz imaging systems are safe according to the current guidelines. Further developments may however result in systems that will exceed the calculated limit. Furthermore, the published MPEs for pulsed exposures are based on measurements at shorter wavelengths and with pulses of longer duration than those used in terahertz pulsed imaging systems, so the results should be treated with caution.
Resumo:
We tested if modulation in mRNA expression of cyclooxygenase isoforms (COX-1 and COX-2) can be related to protective effects of phototherapy in skeletal muscle. Thirty male Wistar rats were divided into five groups receiving either one of four laser doses (0.1, 0.3, 1.0 and 3.0 J) or a no-treatment control group. Laser irradiation (904 nm, 15 mW average power) was performed immediately before the first contraction for treated groups. Electrical stimulation was used to induce six tetanic tibial anterior muscle contractions. Immediately after sixth contraction, blood samples were collected to evaluate creatine kinase activity and muscles were dissected and frozen in liquid nitrogen to evaluate mRNA expression of COX-1 and COX-2. The 1.0 and 3.0 J groups showed significant enhancement (P < 0.01) in total work performed in six tetanic contractions compared with control group. All laser groups, except the 3.0 J group, presented significantly lower post-exercise CK activity than control group. Additionally, 1.0 J group showed increased COX-1 and decreased COX-2 mRNA expression compared with control group and 0.1, 0.3 and 3.0 J laser groups (P < 0.01). We conclude that pre-exercise infrared laser irradiation with dose of 1.0 J enhances skeletal muscle performance and decreases post-exercise skeletal muscle damage and inflammation.
Resumo:
The aim of this study was to evaluate the hypothesis that low-level laser therapy (LLLT) 688 nm and 785 nm accelerate dentin barrier formation and repair process after traumatic pulp exposure. The sample consisted of 45 premolars of capuchin monkeys (Cebus apella) with pulp exposure Class V cavities. All premolars were treated with calcium hydroxide (Ca(OH)(2)), divided in groups of 15 teeth each, and analyzed on 7(th), 25(th), and 60(th) day. Group GI - only Ca(OH)(2), GIF- laser 688 nm, and GIII - laser 785 nm. Laser beam was used in single and punctual dose with the parameters: continuous, 688 nm and 785 nm wavelength, tip`s area of 0.00785 cm(2), power 50 mW, application time 20 s, dose 255 J/cm(2), energy 2 J. Teeth were capped with Ca(OH)(2), Ca(OH)(2) cement and restored with amalgam. All groups presented pulp repair. On 25(th) day the thickness of the formed dentin barrier was different between the groups GI and GII (p < 0.05) and between groups GI and GIII (p < 0.01). On 60(th) day there was difference between GI and GIII (p < 0.01). It may be concluded that, LLLT 688 nm and 785 nm accelerated dentin barrier formation and consequently pulp repair process, with best results using infrared laser 785 nm. (c) 2009 by Astro Ltd. Published exclusively by WLLEY-VCH Verlag GmbH & Co. KGaA