957 resultados para false negative rate
Resumo:
Objective:We aimed to identify the cut-off for risk of pre-eclampsia (PE) in Portuguese population by applying the first trimester prediction model from Fetal Medicine Foundation (FMF) in a prospective enrolled cohort of low risk pregnant women. Population and methods: A prospective cohort of low risk singleton pregnancies underwent routine first-trimester scree - ning from 2011 through 2013. Maternal characteristics, blood pressure, uterine artery Doppler, levels of pregnancy-associated plasma protein-A (PAPP-A) and free b-human chorionic gonadotropin were evaluated. The prediction of PE in first trimester was calculated through software Astraia, the outcome obtained from medical records and the cutoff value was subse quently calculated. Results:Of the 273 enrolled patients, 7 (2.6%) developed PE. In first trimester women who developed PE presented higher uterine arteries resistance, represented by higher values of lowest and mean uterine pulsatility index, p <0.005. There was no statistical significance among the remaining maternal characteristics, body mass index, blood pressure and PAPP-A. Using the FMF first trimester PE algorithm, an ideal cut-off of 0.045 (1/22) would correctly detect 71% women who developed PE for a 12% false positive rate and a likelihood ratio of 12.98 (area under the curve: 0.69; confidence interval 95%: 0.39-0.99). By applying the reported cutoff to our cohort, we would obtain 71.4% true positives, 88.3% true negatives, 11.4% false positives and 28.6% false negatives. Conclusion: By applying a first trimester PE prediction model to low risk pregnancies derived from a Portuguese population, a significant proportion of patients would have been predicted as high risk. New larger studies are required to confirm the present findings.
Resumo:
Canine brains infected with rabies virus were submitted to decomposition by being left at room temperature of 25 to 29oC for up to 168h. At 24h intervals, brain fragments were analyzed by immunofluorescence (IF) and by the mouse intracerebral inoculation (MI) test to confirm the diagnosis of rabies and to measure the putrefaction effect on the accuracy of the diagnosis. Forty eight h after the beginning of the experiment, the MI test showed signs of impairment with four negative results, while after 72h, 100% of the results were negative to the MI test and only one result was negative to the IF test, indicating that the threshold period for accurate diagnosis is 24 to 48h before putrefaction. The authors recommend the shipment of suspected cases of rabies to the laboratory for confirmation, but the use of putrid materials for diagnosis is meaningless because of false-negative results.
Resumo:
Breast cancer is the most common cancer among women, being a major public health problem. Worldwide, X-ray mammography is the current gold-standard for medical imaging of breast cancer. However, it has associated some well-known limitations. The false-negative rates, up to 66% in symptomatic women, and the false-positive rates, up to 60%, are a continued source of concern and debate. These drawbacks prompt the development of other imaging techniques for breast cancer detection, in which Digital Breast Tomosynthesis (DBT) is included. DBT is a 3D radiographic technique that reduces the obscuring effect of tissue overlap and appears to address both issues of false-negative and false-positive rates. The 3D images in DBT are only achieved through image reconstruction methods. These methods play an important role in a clinical setting since there is a need to implement a reconstruction process that is both accurate and fast. This dissertation deals with the optimization of iterative algorithms, with parallel computing through an implementation on Graphics Processing Units (GPUs) to make the 3D reconstruction faster using Compute Unified Device Architecture (CUDA). Iterative algorithms have shown to produce the highest quality DBT images, but since they are computationally intensive, their clinical use is currently rejected. These algorithms have the potential to reduce patient dose in DBT scans. A method of integrating CUDA in Interactive Data Language (IDL) is proposed in order to accelerate the DBT image reconstructions. This method has never been attempted before for DBT. In this work the system matrix calculation, the most computationally expensive part of iterative algorithms, is accelerated. A speedup of 1.6 is achieved proving the fact that GPUs can accelerate the IDL implementation.
Resumo:
Introduction Toxoplasmosis may be life-threatening in fetuses and in immune-deficient patients. Conventional laboratory diagnosis of toxoplasmosis is based on the presence of IgM and IgG anti-Toxoplasma gondii antibodies; however, molecular techniques have emerged as alternative tools due to their increased sensitivity. The aim of this study was to compare the performance of 4 PCR-based methods for the laboratory diagnosis of toxoplasmosis. One hundred pregnant women who seroconverted during pregnancy were included in the study. The definition of cases was based on a 12-month follow-up of the infants. Methods Amniotic fluid samples were submitted to DNA extraction and amplification by the following 4 Toxoplasma techniques performed with parasite B1 gene primers: conventional PCR, nested-PCR, multiplex-nested-PCR, and real-time PCR. Seven parameters were analyzed, sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), negative likelihood ratio (NLR) and efficiency (Ef). Results Fifty-nine of the 100 infants had toxoplasmosis; 42 (71.2%) had IgM antibodies at birth but were asymptomatic, and the remaining 17 cases had non-detectable IgM antibodies but high IgG antibody titers that were associated with retinochoroiditis in 8 (13.5%) cases, abnormal cranial ultrasound in 5 (8.5%) cases, and signs/symptoms suggestive of infection in 4 (6.8%) cases. The conventional PCR assay detected 50 cases (9 false-negatives), nested-PCR detected 58 cases (1 false-negative and 4 false-positives), multiplex-nested-PCR detected 57 cases (2 false-negatives), and real-time-PCR detected 58 cases (1 false-negative). Conclusions The real-time PCR assay was the best-performing technique based on the parameters of Se (98.3%), Sp (100%), PPV (100%), NPV (97.6%), PLR (∞), NLR (0.017), and Ef (99%).
Resumo:
Introduction Despite the known importance of Clostridium difficile as a nosocomial pathogen, few studies regarding Clostridium difficile infection (CDI) in Brazil have been conducted. To date, the diagnostic tests that are available on the Brazilian market for the diagnosis of CDI have not been evaluated. The aim of this study was to compare the performances of four commercial methods for the diagnosis of CDI in patients from a university hospital in Brazil. Methods Three enzyme immunoassays (EIAs) and one nucleic acid amplification test (NAAT) were evaluated against a cytotoxicity assay (CTA) and toxigenic culture (TC). Stool samples from 92 patients with suspected CDI were used in this study. Results Twenty-five (27.2%) of 92 samples were positive according to the CTA, and 23 (25%) were positive according to the TC. All EIAs and the NAAT test demonstrated sensitivities between 59 and 68% and specificities greater than 91%. Conclusions All four methods exhibited low sensitivities for the diagnosis of CDI, which could lead to a large number of false-negative results, an increased risk of cross-infection to other patients, and overtreatment with empirical antibiotics.
Resumo:
The receiver-operating characteristic (ROC) curve is the most widely used measure for evaluating the performance of a diagnostic biomarker when predicting a binary disease outcome. The ROC curve displays the true positive rate (or sensitivity) and the false positive rate (or 1-specificity) for different cut-off values used to classify an individual as healthy or diseased. In time-to-event studies, however, the disease status (e.g. death or alive) of an individual is not a fixed characteristic, and it varies along the study. In such cases, when evaluating the performance of the biomarker, several issues should be taken into account: first, the time-dependent nature of the disease status; and second, the presence of incomplete data (e.g. censored data typically present in survival studies). Accordingly, to assess the discrimination power of continuous biomarkers for time-dependent disease outcomes, time-dependent extensions of true positive rate, false positive rate, and ROC curve have been recently proposed. In this work, we present new nonparametric estimators of the cumulative/dynamic time-dependent ROC curve that allow accounting for the possible modifying effect of current or past covariate measures on the discriminatory power of the biomarker. The proposed estimators can accommodate right-censored data, as well as covariate-dependent censoring. The behavior of the estimators proposed in this study will be explored through simulations and illustrated using data from a cohort of patients who suffered from acute coronary syndrome.
Resumo:
OBJECTIVE: To identify the left inferior pulmonary vein as an indirect marker of increased pulmonary flow in congenital heart diseases.METHODS: We carried out a prospective consecutive study on 40 patients divided into 2 groups as follows: G1 - 20 patients diagnosed with congenital heart disease and increased pulmonary flow; G2 (control group) - 20 patients who were either healthy or had congenital heart disease with decreased or normal pulmonary flow. We obtained the velocity-time integral of the left inferior pulmonary vein flow, excluding the "reverse A" wave, with pulsed Doppler echocardiography.RESULTS: In G1, 19 out of the 20 patients had well-identified dilation of the left inferior pulmonary vein. No G2 patient had dilation of the left inferior pulmonary vein. Dilation of the left inferior pulmonary vein in conditions of increased pulmonary flow had sensitivity of 95%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 95% (1 false-negative case). The integral of time and velocity of the pulmonary venous flow obtained with pulsed Doppler echocardiography was greater in the G1 patients (G1=25.0±4.6 cm versus G2=14.8±2.1 cm, p=0.0001).CONCLUSION: The identification of dilation of the left inferior pulmonary vein suggests the presence of congenital heart disease with increased pulmonary flow. This may be used as an indirect sign of increased flow, mainly in malformations of difficult diagnosis, such as atrial septal defects of the venous sinus or coronary sinus type.
Resumo:
In order to upgrade the reliability of xenodiagnosis, attention has been directed towards population dynamics of the parasite, with particular interest for the following factors: 1. Parasite density which by itself is not a research objective, but by giving an accurate portrayal of parasite development and multiplication, has been incorporated in screening of bugs for xenodiagnosis. 2. On the assumption that food availability might increase parasite density, bugs from xenodiagnosis have been refed at biweekly intervals on chicken blood. 3. Infectivity rates and positives harbouring large parasite yields were based on gut infections, in which the parasite population comprised of all developmental forms was more abundant and easier to detect than in fecal infections, thus minimizing the probability of recording false negatives. 4. Since parasite density, low in the first 15 days of infection, increases rapidly in the following 30 days, the interval of 45 days has been adopted for routine examination of bugs from xenodiagnosis. By following the enumerated measures, all aiming to reduce false negative cases, we are getting closer to a reliable xenodiagnostic procedure. Upgrading the efficacy of xenodiagnosis is also dependent on the xenodiagnostic agent. Of 9 investigated vector species, Panstrongylus megistus deserves top priority as a xenodiagnostic agent. Its extraordinary capability to support fast development and vigorous multiplication of the few parasites, ingested from the host with chronic Chagas' disease, has been revealed by the strikingly close infectivity rates of 91.2% vs. 96.4% among bugs engorged from the same host in the chronic and acute phase of the disease respectively (Table V), the latter comporting an estimated number of 12.3 x 10[raised to the power of 3] parasites in the circulation at the time of xenodiagnosis, as reported previously by the authors (1982).
Resumo:
The limited ability of common variants to account for the genetic contribution to complex disease has prompted searches for rare variants of large effect, to partly explain the 'missing heritability'. Analyses of genome-wide genotyping data have identified genomic structural variants (GSVs) as a source of such rare causal variants. Recent studies have reported multiple GSV loci associated with risk of obesity. We attempted to replicate these associations by similar analysis of two familial-obesity case-control cohorts and a population cohort, and detected GSVs at 11 out of 18 loci, at frequencies similar to those previously reported. Based on their reported frequencies and effect sizes (OR≥25), we had sufficient statistical power to detect the large majority (80%) of genuine associations at these loci. However, only one obesity association was replicated. Deletion of a 220 kb region on chromosome 16p11.2 has a carrier population frequency of 2×10(-4) (95% confidence interval [9.6×10(-5)-3.1×10(-4)]); accounts overall for 0.5% [0.19%-0.82%] of severe childhood obesity cases (P = 3.8×10(-10); odds ratio = 25.0 [9.9-60.6]); and results in a mean body mass index (BMI) increase of 5.8 kg.m(-2) [1.8-10.3] in adults from the general population. We also attempted replication using BMI as a quantitative trait in our population cohort; associations with BMI at or near nominal significance were detected at two further loci near KIF2B and within FOXP2, but these did not survive correction for multiple testing. These findings emphasise several issues of importance when conducting rare GSV association, including the need for careful cohort selection and replication strategy, accurate GSV identification, and appropriate correction for multiple testing and/or control of false discovery rate. Moreover, they highlight the potential difficulty in replicating rare CNV associations across different populations. Nevertheless, we show that such studies are potentially valuable for the identification of variants making an appreciable contribution to complex disease.
Resumo:
PURPOSE: To assess the sensitivity and false positive rate (FPR) of neurological examination and somatosensory evoked potentials (SSEPs) to predict poor outcome in adult patients treated with therapeutic hypothermia after cardiopulmonary resuscitation (CPR). METHODS: MEDLINE and EMBASE were searched for cohort studies describing the association of clinical neurological examination or SSEPs after return of spontaneous circulation with neurological outcome. Poor outcome was defined as severe disability, vegetative state and death. Sensitivity and FPR were determined. RESULTS: A total of 1,153 patients from ten studies were included. The FPR of a bilaterally absent cortical N20 response of the SSEP could be calculated from nine studies including 492 patients. The SSEP had an FPR of 0.007 (confidence interval, CI, 0.001-0.047) to predict poor outcome. The Glasgow coma score (GCS) motor response was assessed in 811 patients from nine studies. A GCS motor score of 1-2 at 72 h had a high FPR of 0.21 (CI 0.08-0.43). Corneal reflex and pupillary reactivity at 72 h after the arrest were available in 429 and 566 patients, respectively. Bilaterally absent corneal reflexes had an FPR of 0.02 (CI 0.002-0.13). Bilaterally absent pupillary reflexes had an FPR of 0.004 (CI 0.001-0.03). CONCLUSIONS: At 72 h after the arrest the motor response to painful stimuli and the corneal reflexes are not a reliable tool for the early prediction of poor outcome in patients treated with hypothermia. The reliability of the pupillary response to light and the SSEP is comparable to that in patients not treated with hypothermia.
Resumo:
Purpose: 1. To assess the diagnostic value of MDCT for acute colitis of various origin confirmed by colonoscopy and histology. 2. To evaluate the accuracy of MDCT of making the correct differential diagnosis. Methods and materials: The electronic hospital database from January 2006 to August 2008 revealed 351 patients with acute colitis of any origin wdetected by colonoscopy. In 85 out of these patients MDCT had been simultaneously performed (delay 3.1 days). Two radiologists jointly reviewed their corresponding CT features without knowledge of pathology and correlated them with the final histological diagnosis. Results: Eighty patients were finally included (46 women, mean age 63.4). Colitis was of ischemic (n = 35, 44%) or infectious (n = 15, 19%) origin. 18 patients (23%) had acute ulcerative colitis or Crohn's disease, in 10 patients (12%) another inflammatory cause and in two patients (2%) post radiation colitis was proven. MDCT was positive in 63 patients (78.9%). In 11 out of the 17 negative MDCT, the examination had been performed without large bowel distention. Ischemic colitis was responsible for 47.1% of the negative MDCT. Correct differential diagnosis was made in 32 (50.7%) out of the 63 positive MDCT. Among the different etiologies, the ischemic colitis was the most often misdiagnosed cause (n = 17, 58.6%). Conclusion: Large bowel distension is mandatory for reliable MDCT detection of acute colitis of any origin. Among the different aetiologies the ischemic cause is the most often associated with false negative MDCT findings and, in case of positive features, the most difficult to recognize as such.
Resumo:
Functional RNA structures play an important role both in the context of noncoding RNA transcripts as well as regulatory elements in mRNAs. Here we present a computational study to detect functional RNA structures within the ENCODE regions of the human genome. Since structural RNAs in general lack characteristic signals in primary sequence, comparative approaches evaluating evolutionary conservation of structures are most promising. We have used three recently introduced programs based on either phylogenetic-stochastic context-free grammar (EvoFold) or energy directed folding (RNAz and AlifoldZ), yielding several thousand candidate structures (corresponding to approximately 2.7% of the ENCODE regions). EvoFold has its highest sensitivity in highly conserved and relatively AU-rich regions, while RNAz favors slightly GC-rich regions, resulting in a relatively small overlap between methods. Comparison with the GENCODE annotation points to functional RNAs in all genomic contexts, with a slightly increased density in 3'-UTRs. While we estimate a significant false discovery rate of approximately 50%-70% many of the predictions can be further substantiated by additional criteria: 248 loci are predicted by both RNAz and EvoFold, and an additional 239 RNAz or EvoFold predictions are supported by the (more stringent) AlifoldZ algorithm. Five hundred seventy RNAz structure predictions fall into regions that show signs of selection pressure also on the sequence level (i.e., conserved elements). More than 700 predictions overlap with noncoding transcripts detected by oligonucleotide tiling arrays. One hundred seventy-five selected candidates were tested by RT-PCR in six tissues, and expression could be verified in 43 cases (24.6%).
Resumo:
Purpose of reviewIn bladder cancer, discrimination between benign and malignant tissue may remain tricky with current endoscopic tools. On the basis of our recent experience with high-magnification cystoscopy, compared with other tools such as optical coherence tomography or confocal laser endomicroscopy, it is suggested here that this discrimination may well be feasible endoscopically. The clinical potential of these systems that are being developed as complementary tools to the current endoscopic equipment is reviewed.Recent findingsAt present, white-light cystoscopy, either assisted by fluorescence cystoscopy or narrow-band imaging, is proposed for the global cystoscopic examination of bladder cancer patients. Both techniques compete to help to reduce the recurrence rate by improving exophytic tumor detection, and the extent of carcinoma in situ and high-grade dysplasia. All of which are important prognosis factors for disease progression. In addition, recent findings on neoangiogenesis that accompanies early stage bladder cancer show that this may also be an important observable switch in bladder cancerogenesis, as it is found very early in tumor development. The high magnification cystoscopy as a complementary tool to fluorescence cystoscopy allows classification of the vessel patterns on fluorescence positive sites, and thus facilitates the discrimination between cancerous and noncancerous lesions. This information may be useful to reduce the false positive rate of fluorescence cystoscopy.SummaryEmerging technologies aiming at a real-time in-situ discrimination between benign and malignant tissue during endoscopic bladder exploration is a promising development for the monitoring of bladder cancer patients.
Resumo:
Introduction: The general strategy to perform anti-doping analysis starts with a screening followed by a confirmatory step when a sample is suspected to be positive. The screening step should be fast, generic and able to highlight any sample that may contain a prohibited substance by avoiding false negative and reducing false positive results. The confirmatory step is a dedicated procedure comprising a selective sample preparation and detection mode. Aim: The purpose of the study is to develop rapid screening and selective confirmatory strategies to detect and identify 103 doping agents in urine. Methods: For the screening, urine samples were simply diluted by a factor 2 with ultra-pure water and directly injected ("dilute and shoot") in the ultrahigh- pressure liquid chromatography (UHPLC). The UHPLC separation was performed in two gradients (ESI positive and negative) from 5/95 to 95/5% of MeCN/Water containing 0.1% formic acid. The gradient analysis time is 9 min including 3 min reequilibration. Analytes detection was performed in full scan mode on a quadrupole time-of-flight (QTOF) mass spectrometer by acquiring the exact mass of the protonated (ESI positive) or deprotonated (ESI negative) molecular ion. For the confirmatory analysis, urine samples were extracted on SPE 96-well plate with mixed-mode cation (MCX) for basic and neutral compounds or anion exchange (MAX) sorbents for acidic molecules. The analytes were eluted in 3 min (including 1.5 min reequilibration) with a S1-25 Ann Toxicol Anal. 2009; 21(S1) Abstracts gradient from 5/95 to 95/5% of MeCN/Water containing 0.1% formic acid. Analytes confirmation was performed in MS and MS/MS mode on a QTOF mass spectrometer. Results: In the screening and confirmatory analysis, basic and neutral analytes were analysed in the positive ESI mode, whereas acidic compounds were analysed in the negative mode. The analyte identification was based on retention time (tR) and exact mass measurement. "Dilute and shoot" was used as a generic sample treatment in the screening procedure, but matrix effect (e.g., ion suppression) cannot be avoided. However, the sensitivity was sufficient for all analytes to reach the minimal required performance limit (MRPL) required by the World Anti Doping Agency (WADA). To avoid time-consuming confirmatory analysis of false positive samples, a pre-confirmatory step was added. It consists of the sample re-injection, the acquisition of MS/MS spectra and the comparison to reference material. For the confirmatory analysis, urine samples were extracted by SPE allowing a pre-concentration of the analyte. A fast chromatographic separation was developed as a single analyte has to be confirmed. A dedicated QTOF-MS and MS/MS acquisition was performed to acquire within the same run a parallel scanning of two functions. Low collision energy was applied in the first channel to obtain the protonated molecular ion (QTOF-MS), while dedicated collision energy was set in the second channel to obtain fragmented ions (QTOF-MS/MS). Enough identification points were obtained to compare the spectra with reference material and negative urine sample. Finally, the entire process was validated and matrix effects quantified. Conclusion: Thanks to the coupling of UHPLC with the QTOF mass spectrometer, high tR repeatability, sensitivity, mass accuracy and mass resolution over a broad mass range were obtained. The method was sensitive, robust and reliable enough to detect and identify doping agents in urine. Keywords: screening, confirmatory analysis, UHPLC, QTOF, doping agents
Resumo:
Forensic scientists have long detected the presence of drugs and their metabolites in biological materials using body fluids such as urine, blood and/or other biological liquids or tissues. For doping analysis, only urine has so far been collected. In recent years, remarkable advances in sensitive analytical techniques have encouraged the analysis of drugs in unconventional biological samples such as hair, saliva and sweat. These samples are easily collected, although drug levels are often lower than the corresponding levels in urine or blood. This chapter reviews recent studies in the detection of doping agents in hair, saliva and sweat. Sampling, analytical procedures and interpretation of the results are discussed in comparison with those obtained from urine and blood samples.