901 resultados para extinction probability
Resumo:
This paper describes the development of a model, based on Bayesian networks, to estimate the likelihood that sheep flocks are infested with lice at shearing and to assist farm managers or advisers to assess whether or not to apply a lousicide treatment. The risk of lice comes from three main sources: (i) lice may have been present at the previous shearing and not eradicated; (ii) lice may have been introduced with purchased sheep; and (iii) lice may have entered with strays. A Bayesian network is used to assess the probability of each of these events independently and combine them for an overall assessment. Rubbing is a common indicator of lice but there are other causes too. If rubbing has been observed, an additional Bayesian network is used to assess the probability that lice are the cause. The presence or absence of rubbing and its possible cause are combined with these networks to improve the overall risk assessment.
Resumo:
Unlike standard applications of transport theory, the transport of molecules and cells during embryonic development often takes place within growing multidimensional tissues. In this work, we consider a model of diffusion on uniformly growing lines, disks, and spheres. An exact solution of the partial differential equation governing the diffusion of a population of individuals on the growing domain is derived. Using this solution, we study the survival probability, S(t). For the standard nongrowing case with an absorbing boundary, we observe that S(t) decays to zero in the long time limit. In contrast, when the domain grows linearly or exponentially with time, we show that S(t) decays to a constant, positive value, indicating that a proportion of the diffusing substance remains on the growing domain indefinitely. Comparing S(t) for diffusion on lines, disks, and spheres indicates that there are minimal differences in S(t) in the limit of zero growth and minimal differences in S(t) in the limit of fast growth. In contrast, for intermediate growth rates, we observe modest differences in S(t) between different geometries. These differences can be quantified by evaluating the exact expressions derived and presented here.
Resumo:
We consider the motion of a diffusive population on a growing domain, 0 < x < L(t ), which is motivated by various applications in developmental biology. Individuals in the diffusing population, which could represent molecules or cells in a developmental scenario, undergo two different kinds of motion: (i) undirected movement, characterized by a diffusion coefficient, D, and (ii) directed movement, associated with the underlying domain growth. For a general class of problems with a reflecting boundary at x = 0, and an absorbing boundary at x = L(t ), we provide an exact solution to the partial differential equation describing the evolution of the population density function, C(x,t ). Using this solution, we derive an exact expression for the survival probability, S(t ), and an accurate approximation for the long-time limit, S = limt→∞ S(t ). Unlike traditional analyses on a nongrowing domain, where S ≡ 0, we show that domain growth leads to a very different situation where S can be positive. The theoretical tools developed and validated in this study allow us to distinguish between situations where the diffusive population reaches the moving boundary at x = L(t ) from other situations where the diffusive population never reaches the moving boundary at x = L(t ). Making this distinction is relevant to certain applications in developmental biology, such as the development of the enteric nervous system (ENS). All theoretical predictions are verified by implementing a discrete stochastic model.
Resumo:
Anticipating the number and identity of bidders has significant influence in many theoretical results of the auction itself and bidders’ bidding behaviour. This is because when a bidder knows in advance which specific bidders are likely competitors, this knowledge gives a company a head start when setting the bid price. However, despite these competitive implications, most previous studies have focused almost entirely on forecasting the number of bidders and only a few authors have dealt with the identity dimension qualitatively. Using a case study with immediate real-life applications, this paper develops a method for estimating every potential bidder’s probability of participating in a future auction as a function of the tender economic size removing the bias caused by the contract size opportunities distribution. This way, a bidder or auctioner will be able to estimate the likelihood of a specific group of key, previously identified bidders in a future tender.
Resumo:
Accurate determination of same-sex twin zygosity is important for medical, scientific and personal reasons. Determination may be based upon questionnaire data, blood group, enzyme isoforms and fetal membrane examination, but assignment of zygosity must ultimately be confirmed by genotypic data. Here methods are reviewed for calculating average probabilities of correctly concluding a twin pair is monozygotic, given they share the same genotypes across all loci for commonly utilized multiplex short tandem repeat (STR) kits.
Resumo:
The limits of stability and extinction of a laminar diffusion flame have been experimentally studied in a two-dimensional laminar boundary layer over a porous flat plate through which n-pentane vapour was uniformly injected. The stability and extinction boundaries are mapped on a plot of free stream oxidant velocity versus fuel injection velocity. Effects of free stream temperature and of dilution of fuel and oxidant on these boundaries have been examined. The results show that there exists a limiting oxidant flux beyond which the diffusion flame cannot be sustained. This limiting oxidant flux has been found to depend_on the free stream oxygen concentration, fuel concentration and injection'velocity of the fuel.
Resumo:
Sampling design is critical to the quality of quantitative research, yet it does not always receive appropriate attention in nursing research. The current article details how balancing probability techniques with practical considerations produced a representative sample of Australian nursing homes (NHs). Budgetary, logistical, and statistical constraints were managed by excluding some NHs (e.g., those too difficult to access) from the sampling frame; a stratified, random sampling methodology yielded a final sample of 53 NHs from a population of 2,774. In testing the adequacy of representation of the study population, chi-square tests for goodness of fit generated nonsignificant results for distribution by distance from major city and type of organization. A significant result for state/territory was expected and was easily corrected for by the application of weights. The current article provides recommendations for conducting high-quality, probability-based samples and stresses the importance of testing the representativeness of achieved samples.
Resumo:
Whether a statistician wants to complement a probability model for observed data with a prior distribution and carry out fully probabilistic inference, or base the inference only on the likelihood function, may be a fundamental question in theory, but in practice it may well be of less importance if the likelihood contains much more information than the prior. Maximum likelihood inference can be justified as a Gaussian approximation at the posterior mode, using flat priors. However, in situations where parametric assumptions in standard statistical models would be too rigid, more flexible model formulation, combined with fully probabilistic inference, can be achieved using hierarchical Bayesian parametrization. This work includes five articles, all of which apply probability modeling under various problems involving incomplete observation. Three of the papers apply maximum likelihood estimation and two of them hierarchical Bayesian modeling. Because maximum likelihood may be presented as a special case of Bayesian inference, but not the other way round, in the introductory part of this work we present a framework for probability-based inference using only Bayesian concepts. We also re-derive some results presented in the original articles using the toolbox equipped herein, to show that they are also justifiable under this more general framework. Here the assumption of exchangeability and de Finetti's representation theorem are applied repeatedly for justifying the use of standard parametric probability models with conditionally independent likelihood contributions. It is argued that this same reasoning can be applied also under sampling from a finite population. The main emphasis here is in probability-based inference under incomplete observation due to study design. This is illustrated using a generic two-phase cohort sampling design as an example. The alternative approaches presented for analysis of such a design are full likelihood, which utilizes all observed information, and conditional likelihood, which is restricted to a completely observed set, conditioning on the rule that generated that set. Conditional likelihood inference is also applied for a joint analysis of prevalence and incidence data, a situation subject to both left censoring and left truncation. Other topics covered are model uncertainty and causal inference using posterior predictive distributions. We formulate a non-parametric monotonic regression model for one or more covariates and a Bayesian estimation procedure, and apply the model in the context of optimal sequential treatment regimes, demonstrating that inference based on posterior predictive distributions is feasible also in this case.
Resumo:
At present, the rate of small firm adoption of the Internet's ubiquitous World Wide Web (the web) far exceeds the actual exploitation its commercial potential. An inability to strategically acquire, comprehend and use external knowledge is proposed as a major barrier to optimal exploitation of the Internet. This paper discusses the limitations of applying market orientation theory to explain and guide small firm exploitation of the web. Absorptive capacity is introduced as an alternative theory that when viewed from an evolutionary perspective provides potentially more insightful discussion. An inability to detect emerging business model dominant designs is suggested to be a mixture of the nature of the technology that supports the Internet and underdeveloped small firm knowledge processing capabilities. We conclude with consideration of the practical and theoretical implications that arise from the paper.
Resumo:
Under certain special conditions natural selection can be effective at the level of local populations, or demes. Such interpopulation selection will favor genotypes that reduce the probability of extinction of their parent population even at the cost of a lowered inclusive fitness. Such genotypes may be characterized by altruistic traits only in a viscous population, i.e., in a population in which neighbors tend to be closely related. In a non-viscous population the interpopulation selection will instead favor spiteful traits when the populations are susceptible to extinction through the overutilization of the habitat, and cooperative traits when it is the newly established populations that are in the greatest danger of extinction.
Resumo:
Hydrologic impacts of climate change are usually assessed by downscaling the General Circulation Model (GCM) output of large-scale climate variables to local-scale hydrologic variables. Such an assessment is characterized by uncertainty resulting from the ensembles of projections generated with multiple GCMs, which is known as intermodel or GCM uncertainty. Ensemble averaging with the assignment of weights to GCMs based on model evaluation is one of the methods to address such uncertainty and is used in the present study for regional-scale impact assessment. GCM outputs of large-scale climate variables are downscaled to subdivisional-scale monsoon rainfall. Weights are assigned to the GCMs on the basis of model performance and model convergence, which are evaluated with the Cumulative Distribution Functions (CDFs) generated from the downscaled GCM output (for both 20th Century [20C3M] and future scenarios) and observed data. Ensemble averaging approach, with the assignment of weights to GCMs, is characterized by the uncertainty caused by partial ignorance, which stems from nonavailability of the outputs of some of the GCMs for a few scenarios (in Intergovernmental Panel on Climate Change [IPCC] data distribution center for Assessment Report 4 [AR4]). This uncertainty is modeled with imprecise probability, i.e., the probability being represented as an interval gray number. Furthermore, the CDF generated with one GCM is entirely different from that with another and therefore the use of multiple GCMs results in a band of CDFs. Representing this band of CDFs with a single valued weighted mean CDF may be misleading. Such a band of CDFs can only be represented with an envelope that contains all the CDFs generated with a number of GCMs. Imprecise CDF represents such an envelope, which not only contains the CDFs generated with all the available GCMs but also to an extent accounts for the uncertainty resulting from the missing GCM output. This concept of imprecise probability is also validated in the present study. The imprecise CDFs of monsoon rainfall are derived for three 30-year time slices, 2020s, 2050s and 2080s, with A1B, A2 and B1 scenarios. The model is demonstrated with the prediction of monsoon rainfall in Orissa meteorological subdivision, which shows a possible decreasing trend in the future.
Resumo:
The area of intensively managed forests, in which required conditions for several liverwort species are seldom found, has expanded over the forest landscape during the last century. Liverworts are very sensitive to habitat changes, because they demand continuously moist microclimate. Consequently, about third of the forest liverworts have been classified as threatened or near threatened in Finland. The general objective of this thesis is to increase knowledge of the reproductive and dispersal strategies of the substrate-specific forest bryophytes. A further aim was to develop recommendations for conservation measures for species inhabiting unstable and stable habitats in forest landscape. Both population ecological and genetic methods have been applied in the research. Anastrophyllum hellerianum inhabits spatially and temporally limited substrate patches, decaying logs, which can be considered as unstable habitats. The results show that asexual reproduction by gemmae is the dominant mode of reproduction, whereas sexual reproduction is considerably infrequent. Unlike previously assumed, not only spores but also the asexual propagules may contribute to long-distance dispersal. The combination of occasional spore production and practically continuous, massive gemma production facilitates dispersal both on a local scale and over long distances, and it compensates for the great propagule losses that take place preceding successful establishment at suitable sites. However, establishment probability of spores may be restricted because of environmental and biological limitations linked to the low success of sexual reproduction. Long-lasting dry seasons are likely to result in a low success of sexual reproduction and decreased release rate of gemmae from the shoots, and consequent fluctuations in population sizes. In the long term, the substratum limitation is likely to restrict population sizes and cause local extinctions, especially in small-sized remnant populations. Contrastingly, larger forest fragments with more natural disturbance dynamics, to which the species is adapted, are pivotal to species survival. Trichocolea tomentella occupies stable spring and mesic habitats in woodland. The relatively small populations are increasingly fragmented with a high risk for extinction for extrinsic reasons. The results show that T. tomentella mainly invests in population persistence by effective clonal growth via forming independent ramets and in competitive ability, and considerably less in sexuality and dispersal potential. The populations possess relatively high levels of genetic diversity regardless of population size and of degree of isolation. Thus, the small-sized populations inhabiting stable habitats should not be neglected when establishing conservation strategies for the species and when considering the habitat protection of small spring sites. Restricted dispersal capacity, also on a relatively small spatial scale, is likely to prevent successful (re-)colonization in the potential habitat patches of recovering forest landscapes. By contrast, random short-range dispersal of detached vegetative fragments within populations at suitable habitat seems to be frequent. Thus, the restoration actions of spring and streamside habitats close to the populations of T. tomentella may contribute to population expansion. That, in turn, decreases the harmful effects of environmental stochasticity.
Resumo:
Climate change will influence the living conditions of all life on Earth. For some species the change in the environmental conditions that has occurred so far has already increased the risk of extinction, and the extinction risk is predicted to increase for large numbers of species in the future. Some species may have time to adapt to the changing environmental conditions, but the rate and magnitude of the change are too great to allow many species to survive via evolutionary changes. Species responses to climate change have been documented for some decades. Some groups of species, like many insects, respond readily to changes in temperature conditions and have shifted their distributions northwards to new climatically suitable regions. Such range shifts have been well documented especially in temperate zones. In this context, butterflies have been studied more than any other group of species, partly for the reason that their past geographical ranges are well documented, which facilitates species-climate modelling and other analyses. The aim of the modelling studies is to examine to what extent shifts in species distributions can be explained by climatic and other factors. Models can also be used to predict the future distributions of species. In this thesis, I have studied the response to climate change of one species of butterfly within one geographically restricted area. The study species, the European map butterfly (Araschnia levana), has expanded rapidly northwards in Finland during the last two decades. I used statistical and dynamic modelling approaches in combination with field studies to analyse the effects of climate warming and landscape structure on the expansion. I studied possible role of molecular variation in phosphoglucose isomerase (PGI), a glycolytic enzyme affecting flight metabolism and thereby flight performance, in the observed expansion of the map butterfly at two separate expansion fronts in Finland. The expansion rate of the map butterfly was shown to be correlated with the frequency of warmer than average summers during the study period. The result is in line with the greater probability of occurrence of the second generation during warm summers and previous results on this species showing greater mobility of the second than first generation individuals. The results of a field study in this thesis indicated low mobility of the first generation butterflies. Climatic variables alone were not sufficient to explain the observed expansion in Finland. There are also problems in transferring the climate model to new regions from the ones from which data were available to construct the model. The climate model predicted a wider distribution in the south-western part of Finland than what has been observed. Dynamic modelling of the expansion in response to landscape structure suggested that habitat and landscape structure influence the rate of expansion. In southern Finland the landscape structure may have slowed down the expansion rate. The results on PGI suggested that allelic variation in this enzyme may influence flight performance and thereby the rate of expansion. Genetic differences of the populations at the two expansion fronts may explain at least partly the observed differences in the rate of expansion. Individuals with the genotype associated with high flight metabolic rate were most frequent in eastern Finland, where the rate of range expansion has been highest.
Resumo:
We derive a very general expression of the survival probability and the first passage time distribution for a particle executing Brownian motion in full phase space with an absorbing boundary condition at a point in the position space, which is valid irrespective of the statistical nature of the dynamics. The expression, together with the Jensen's inequality, naturally leads to a lower bound to the actual survival probability and an approximate first passage time distribution. These are expressed in terms of the position-position, velocity-velocity, and position-velocity variances. Knowledge of these variances enables one to compute a lower bound to the survival probability and consequently the first passage distribution function. As examples, we compute these for a Gaussian Markovian process and, in the case of non-Markovian process, with an exponentially decaying friction kernel and also with a power law friction kernel. Our analysis shows that the survival probability decays exponentially at the long time irrespective of the nature of the dynamics with an exponent equal to the transition state rate constant.