993 resultados para exposure concentration


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Valganciclovir and ganciclovir are widely used for the prevention of cytomegalovirus (CMV) infection in solid organ transplant recipients, with a major impact on patients' morbidity and mortality. Oral valganciclovir, the ester prodrug of ganciclovir, has been developed to enhance the oral bioavailability of ganciclovir. It crosses the gastrointestinal barrier through peptide transporters and is then hydrolysed into ganciclovir. This review aims to describe the current knowledge of the pharmacokinetic and pharmacodynamic characteristics of this agent, and to address the issue of therapeutic drug monitoring. Based on currently available literature, ganciclovir pharmacokinetics in adult solid organ transplant recipients receiving oral valganciclovir are characterized by bioavailability of 66 +/- 10% (mean +/- SD), a maximum plasma concentration of 3.1 +/- 0.8 mg/L after a dose of 450 mg and of 6.6 +/- 1.9 mg/L after a dose of 900 mg, a time to reach the maximum plasma concentration of 3.0 +/- 1.0 hours, area under the plasma concentration-time curve values of 29.1 +/- 5.3 mg.h/L and 51.9 +/- 18.3 mg.h/L (after 450 mg and 900 mg, respectively), apparent clearance of 12.4 +/- 3.8 L/h, an elimination half-life of 5.3 +/- 1.5 hours and an apparent terminal volume of distribution of 101 +/- 36 L. The apparent clearance is highly correlated with renal function, hence the dosage needs to be adjusted in proportion to the glomerular filtration rate. Unexplained interpatient variability is limited (18% in apparent clearance and 28% in the apparent central volume of distribution). There is no indication of erratic or limited absorption in given subgroups of patients; however, this may be of concern in patients with severe malabsorption. The in vitro pharmacodynamics of ganciclovir reveal a mean concentration producing 50% inhibition (IC(50)) among CMV clinical strains of 0.7 mg/L (range 0.2-1.9 mg/L). Systemic exposure of ganciclovir appears to be moderately correlated with clinical antiviral activity and haematotoxicity during CMV prophylaxis in high-risk transplant recipients. Low ganciclovir plasma concentrations have been associated with treatment failure and high concentrations with haematotoxicity and neurotoxicity, but no formal therapeutic or toxic ranges have been validated. The pharmacokinetic parameters of ganciclovir after valganciclovir administration (bioavailability, apparent clearance and volume of distribution) are fairly predictable in adult transplant patients, with little interpatient variability beyond the effect of renal function and bodyweight. Thus ganciclovir exposure can probably be controlled with sufficient accuracy by thorough valganciclovir dosage adjustment according to patient characteristics. In addition, the therapeutic margin of ganciclovir is loosely defined. The usefulness of systematic therapeutic drug monitoring in adult transplant patients therefore appears questionable; however, studies are still needed to extend knowledge to particular subgroups of patients or dosage regimens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Bone cements and substitutes are commonly used in surgery to deliver antibiotics locally. The objective of this study was to assess the systemic absorption and disposition of vancomycin in patients treated with active calcium sulfate bone filler and to predict systemic concentrations under various conditions. Method: 277 blood samples were taken from 42 patients receiving vancomycin in bone cement during surgery. Blood samples were collected from 3h to 10 days after implantation. Vancomycin was measured by immunoenzymatic assay. Population pharmacokinetic (PK) analysis was performed using NONMEM to assess average estimates and variability of PK parameters. Based on the final model, simulations with various doses and renal function levels were performed. Results: The patients were 64 ± 20 years old, their body weight was 81 ± 22 kg and Cockcroft-Gault creatinine clearance (CLcr) 98 ± 55 mL/min. Vancomycin doses ranged from 200 mg to 6000 mg and implantation sites were hip (n=16), tibia (10) or others (16). Concentration profiles remained low and consistent with absorption rate-limited first-order release, while showing prominent variability. Mean clearance (CL) was 3.87 L/h (CV 35%), absorption rate constant (ka) 0.004 h-1 (66%) and volume of distribution (V) 9.5 L. Simulations with up to 8000 mg vancomycin implant showed systemic concentrations exceeding 20 mg/L for 3.5 days in 43% of the patients with CLcr 15 mL/min, whereas 7% of the patients with normal renal function had a concentration above 20 mg/L for 1.1 days. Subtherapeutic concentrations (0.4-4 mg/L) were predicted during a median of 22 days in patients with normal renal function and 4000 mg vancomycin implant, with limited influence of dose or renal function. Conclusion: Vancomycin-laden calcium sulfate implant does not raise toxicity concern. Selection of resistant bacteria, such as Enterococcus and Staphylococcus species, might however be a concern, as simulations show persistent subtherapeutic systemic concentrations during 3 to 4 weeks in these patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Our goal was to determine whether short-term intermittent hypoxia exposure, at a level well tolerated by healthy humans and previously shown by our group to increase EPO and erythropoiesis, could mobilizehematopoietic stem cells (HSC) and increase their presence in peripheral circulation. Methods: Four healthy male subjects were subjected to three different protocols: one with only a hypoxic stimulus (OH), another with a hypoxic stimulus plus muscle electrostimulation (HME) and the third with only muscle electrostimulation (OME). Intermittent hypobaric hypoxia exposureconsisted of only three sessions of three hours at barometric pressure 540 hPa (equivalent to an altitude of 5000 m) for three consecutive days, whereas muscular electrostimulation was performed in two separate periods of 25 min in each session. Blood samples were obtained from an antecubital vein on three consecutive days immediately before the experiment and 24 h, 48 h, 4 days and 7 days after the last day of hypoxic exposure. Results: There was a clear increase in the number of circulating CD34+ cells after combined hypobaric hypoxia and muscular electrostimulation. This response was not observed after the isolated application of the same stimuli. Conclusion: Our results open a new application field for hypobaric systems as a way to increase efficiency in peripheral HSC collection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Our goal was to determine whether short-term intermittent hypoxia exposure, at a level well tolerated by healthy humans and previously shown by our group to increase EPO and erythropoiesis, could mobilizehematopoietic stem cells (HSC) and increase their presence in peripheral circulation. Methods: Four healthy male subjects were subjected to three different protocols: one with only a hypoxic stimulus (OH), another with a hypoxic stimulus plus muscle electrostimulation (HME) and the third with only muscle electrostimulation (OME). Intermittent hypobaric hypoxia exposureconsisted of only three sessions of three hours at barometric pressure 540 hPa (equivalent to an altitude of 5000 m) for three consecutive days, whereas muscular electrostimulation was performed in two separate periods of 25 min in each session. Blood samples were obtained from an antecubital vein on three consecutive days immediately before the experiment and 24 h, 48 h, 4 days and 7 days after the last day of hypoxic exposure. Results: There was a clear increase in the number of circulating CD34+ cells after combined hypobaric hypoxia and muscular electrostimulation. This response was not observed after the isolated application of the same stimuli. Conclusion: Our results open a new application field for hypobaric systems as a way to increase efficiency in peripheral HSC collection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the study is to present the application of a headspace-gas chromatography-mass spectrometry (HS-GC-MS) method for the determination of the carbon monoxide (CO) blood concentration and to compare it with carboxyhemoglobin (HbCO) saturation. In postmortem cases, the HbCO measured by spectrophotometry frequently leads to inaccurate results due to inadequate samples or analyses. The true role of CO intoxication in the death of a person could be misclassified. The estimation of HbCO from HS-GC-MS CO measurements provides helpful information by determining the total CO levels (CO linked to hemoglobin (HbCO) and CO dissociated from hemoglobin). The CO concentrations were converted in HbCO saturation levels to define cutoff blood CO values. CO limits were defined as less than 1 μmol/mL for living persons, less than 1.5 μmol/mL for dead persons without CO exposure, and greater than 3 μmol/mL for dead persons with clear CO poisoning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to test the short-term effects of using hypoxic rooms before a simulated running event. Thirteen subjects (29 +/- 4 years) lived in a hypoxic dormitory (1,800 m) for either 2 nights (n = 6) or 2 days + nights (n = 7) before performing a 1,500-m treadmill test. Performance, expired gases, and muscle electrical activity were recorded and compared with a control session performed 1 week before or after the altitude session (random order). Arterial blood samples were collected before and after altitude exposure. Arterial pH and hemoglobin concentration increased (p < 0.05) and PCO2 decreased (p < 0.05) upon exiting the room. However, these parameters returned (p < 0.05) to basal levels within a few hours. During exercise, mean ventilation (VE) was higher (p < 0.05) after 2 nights or days + nights of moderate altitude exposure (113.0 +/- 27.2 L.min) than in the control run (108.6 +/- 27.8 L.min), without any modification in performance (360 +/- 45 vs. 360 +/- 42 seconds, respectively) or muscle electrical activity. This elevated VE during the run after the hypoxic exposure was probably because of the subsistence effects of the hypoxic ventilatory response. However, from a practical point of view, although the use of a normobaric simulating altitude chamber exposure induced some hematological adaptations, these disappeared within a few hours and failed to provide any benefit during the subsequent 1,500-m run.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Osteoset(®) T is a calcium sulphate void filler containing 4% tobramycin sulphate, used to treat bone and soft tissue infections. Despite systemic exposure to the antibiotic, there are no pharmacokinetic studies in humans published so far. Based on the observations made in our patients, a model predicting tobramycin serum levels and evaluating their toxicity potential is presented. METHODS: Following implantation of Osteoset(®) T, tobramycin serum concentrations were monitored systematically. A pharmacokinetic analysis was performed using a non-linear mixed effects model based on a one compartment model with first-degree absorption. RESULTS: Data from 12 patients treated between October 2006 and March 2008 were analysed. Concentration profiles were consistent with the first-order slow release and single-compartment kinetics, whilst showing important variability. Predicted tobramycin serum concentrations depended clearly on both implanted drug amount and renal function. DISCUSSION AND CONCLUSION: Despite the popularity of aminoglycosides for local antibiotic therapy, pharmacokinetic data for this indication are scarce, and not available for calcium sulphate as carrier material. Systemic exposure to tobramycin after implantation of Osteoset(®) T appears reassuring regarding toxicity potential, except in case of markedly impaired renal function. We recommend in adapting the dosage to the estimated creatinine clearance rather than solely to the patient's weight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Health assessment and medical surveillance of workers exposed to combustion nanoparticles are challenging. The aim was to evaluate the feasibility of using exhaled breath condensate (EBC) from healthy volunteers for (1) assessing the lung deposited dose of combustion nanoparticles and (2) determining the resulting oxidative stress by measuring hydrogen peroxide (H2O2) and malondialdehyde (MDA). Methods: Fifteen healthy nonsmoker volunteers were exposed to three different levels of sidestream cigarette smoke under controlled conditions. EBC was repeatedly collected before, during, and 1 and 2 hr after exposure. Exposure variables were measured by direct reading instruments and by active sampling. The different EBC samples were analyzed for particle number concentration (light-scattering-based method) and for selected compounds considered oxidative stress markers. Results: Subjects were exposed to an average airborne concentration up to 4.3×10(5) particles/cm(3) (average geometric size ∼60-80 nm). Up to 10×10(8) particles/mL could be measured in the collected EBC with a broad size distribution (50(th) percentile ∼160 nm), but these biological concentrations were not related to the exposure level of cigarette smoke particles. Although H2O2 and MDA concentrations in EBC increased during exposure, only H2O2 showed a transient normalization 1 hr after exposure and increased afterward. In contrast, MDA levels stayed elevated during the 2 hr post exposure. Conclusions: The use of diffusion light scattering for particle counting proved to be sufficiently sensitive to detect objects in EBC, but lacked the specificity for carbonaceous tobacco smoke particles. Our results suggest two phases of oxidation markers in EBC: first, the initial deposition of particles and gases in the lung lining liquid, and later the start of oxidative stress with associated cell membrane damage. Future studies should extend the follow-up time and should remove gases or particles from the air to allow differentiation between the different sources of H2O2 and MDA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have demonstrated that poultry-house workers are exposed to very high levels of organic dust and consequently have an increased prevalence of adverse respiratory symptoms. However, the influence of the age of broilers, on bioaerosol concentrations has not been investigated. To evaluate the evolution of bioaerosol concentration during the fattening period, bioaerosol parameters (inhalable dust, endotoxin and bacteria) were measured in 12 poultry confinement buildings in Switzerland, at 3 different stages of the birds' growth; Samples of air taken from within the breathing zones of individual poultry-house employees as they caught the chickens ready to be transported for slaughter, were also analysed. Quantitative PCR (Q-PCR) was used to assess the quantity of total airborne bacteria and total airborne Staphylococcus species. Bioaerosol levels increased significantly during the fattening period of the chickens. During the task of catching mature birds, the mean inhalable dust concentration for a worker was 31 ± 4.7 mg/m3, and endotoxin concentration was 11'080 ± 3436 UE/m3 air, more than ten-fold higher than the Swiss occupational recommended value (1000 UE/m3). The mean exposure level of bird catchers to total bacteria and Staphylococcus species measured by Q-PCR is also very high, respectively reaching values of 72 (± 11) x107 cells/m3 air and 70 (± 16) x106/m3 air. It was concluded that in the absence of wearing protective breathing apparatus, chicken catchers in Switzerland risk exposure beyond recommended limits for all measured bioaerosol parameters. Moreover, the use of Q-PCR to estimate total and specific numbers of airborne bacteria is a promising tool for evaluating any modifications intended to improve the safety of current working practices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L'exposition aux poussières de bois est associé à un risque accru d'adénocarcinomes des fosses nasales et des sinus paranasaux (SNC, 'Sinonasal cancer') chez les travailleurs du bois. Les poussières de bois sont ainsi reconnues comme cancérogènes avérés pour l'homme par le Centre international de Recherche sur le Cancer (CIRC). Toutefois, l'agent causal spécifique et le mécanisme sous-jacent relatifs au cancer lié aux poussières de bois demeurent inconnus. Une possible explication est une co-exposition aux poussières de bois et aux Hydrocarbures Aromatiques Polycycliques (HAP), ces derniers étant potentiellement cancérogènes. Dans les faits, les travailleurs du bois sont non seulement exposés aux poussières de bois naturel, mais également à celles générées lors d'opérations effectuées à l'aide de machines (ponceuses, scies électriques, etc.) sur des finitions de bois (bois traités) ou sur des bois composites, tels que le mélaminé et les panneaux de fibres à densité moyenne (MDF, 'Medium Density Fiberboard'). Des HAP peuvent en effet être générés par la chaleur produite par l'utilisation de ces machines sur la surface du bois. Les principaux objectifs de cette thèse sont les suivants: (1) quantifier HAP qui sont présents dans les poussières générées lors de diverses opérations courantes effectuées sur différents bois (2) quantifier l'exposition individuelle aux poussières de bois et aux HAP chez les travailleurs, et (3) évaluer les effets génotoxiques (dommages au niveau de l'ADN et des chromosomes) due à l'exposition aux poussières de bois et aux HAP. Cette thèse est composée par une étude en laboratoire (objectif 1) et par une étude de terrain (objectifs 2 et 3). Pour l'étude en laboratoire, nous avons collecté des poussières de différents type de bois (sapin, MDF, hêtre, sipo, chêne, bois mélaminé) générées au cours de différentes opérations (comme le ponçage et le sciage), et ceci dans une chambre expérimentale et dans des conditions contrôlées. Ensuite, pour l'étude de terrain, nous avons suivi, dans le cadre de leur activité professionnelle, 31 travailleurs de sexe masculin (travailleurs du bois et ébenistes) exposés aux poussières de bois pendant deux jours de travail consécutifs. Nous avons également recruté, comme groupe de contrôle, 19 travailleurs non exposés. Pour effectuer une biosurveillance, nous avons collecté des échantillons de sang et des échantillons de cellules nasales et buccales pour chacun des participants. Ces derniers ont également rempli un questionnaire comprenant des données démographiques, ainsi que sur leur style de vie et sur leur exposition professionnelle. Pour les travailleurs du bois, un échantillonnage individuel de poussière a été effectué sur chaque sujet à l'aide d'une cassette fermée, puis nous avons évalué leur exposition à la poussière de bois et aux HAP, respectivement par mesure gravimétrique et par Chromatographie en phase gazeuse combinée à la spectrométrie de masse. L'évaluation des dommages induits à l'ADN et aux chromosomes (génotoxicité) a été, elle, effectuée à l'aide du test des micronoyaux (MN) sur les cellules nasales et buccales et à l'aide du test des comètes sur les échantillons de sang. Nos résultats montrent dans la poussière de la totalité des 6 types de bois étudiés la présence de HAP (dont certains sont cancérogènes). Des différences notoires dans les concentrations ont été néanmoins constatées en fonction du matériau étudié : les concentrations allant de 0,24 ppm pour la poussière de MDF à 7.95 ppm pour le mélaminé. Nos résultats montrent également que les travailleurs ont été exposés individuellement à de faibles concentrations de HAP (de 37,5 à 119,8 ng m-3) durant les opérations de travail du bois, alors que les concentrations de poussières inhalables étaient relativement élevés (moyenne géométrique de 2,8 mg m-3). En ce qui concerne la génotoxicité, les travailleurs exposés à la poussière de bois présentent une fréquence significativement plus élevée en MN dans les cellules nasales et buccales que les travailleurs du groupe témoin : un odds ratio de 3.1 a été obtenu pour les cellules nasales (IC 95% : de 1.8 à 5.1) et un odds ratio de 1,8 pour les cellules buccales (IC 95% : de 1.3 à 2.4). En outre, le test des comètes a montré que les travailleurs qui ont déclaré être exposés aux poussières de MDF et/ou de mélaminé avaient des dommages à l'ADN significativement plus élevés que les deux travailleurs exposés à la poussière de bois naturel (sapin, épicéa, hêtre, chêne) et que les travailleurs du groupe témoin (p <.01). Enfin, la fréquence des MN dans les cellules nasales et buccales augmentent avec les années d'exposition aux poussières de bois. Par contre, il n'y a pas de relation dose-réponse concernant la génotoxicité due à l'exposition journalière à la poussière et aux HAP. Cette étude montre qu'une exposition aux HAP eu bien lieu lors des opérations de travail du bois. Les travailleurs exposés aux poussières de bois, et donc aux HAP, courent un risque plus élevé (génotoxicité) par rapport au groupe témoin. Étant donné que certains des HAP détectés sont reconnus potentiellement cancérogènes, il est envisageable que les HAP générés au cours du travail sur les matériaux de bois sont un des agents responsables de la génotoxicité de la poussière de bois et du risque élevé de SNC observé chez les travailleurs du secteur. Etant donné la corrélation entre augmentation de la fréquence des MN, le test des micronoyaux dans les cellules nasales et buccales constitue sans conteste un futur outil pour la biosurveillance et pour la détection précoce du risque de SNC chez les travailleurs. - Exposures to wood dust have been associated with an elevated risk of adenocarcinomas of the Dasal cavity and the paranasal sinuses (sinonasal cancer or SNC) among wood workers. Wood dust is recognized as a human carcinogen by the International Agency for Research on Cancer. However, the specific cancer causative agent(s) and the mechanism(s) behind wood dust related carcinogenesis remains unknown. One possible explanation is a co-exposure to wood dust and polycyclic aromatic hydrocarbons (PAH), the latter being carcinogenic. In addition, wood workers are not only exposed to natural wood but also to wood finishes and composite woods such as wood melamine and medium density fiber (MDF) boards during the manipulation with power tools. The heat produced by the use of power tools can cause the generation of PAH from wood materials. The main objectives of the present thesis are to: (1) quantify possible PAH concentrations in wood dust generated during various common woodworking operations using different wood materials; (2) quantify personal wood dust concentrations and PAH exposures among wood workers; and (3) assess genotoxic effects (i.e., DNA and chromosomal damage) of wood dust and PAH exposure in wood workers. This thesis is composed by a laboratory study (objective 1) and a field study (objectives 2 and 3). In the laboratory study we collected wood dust from different wood materials (fir, MDF, beech, mahagany, oak, and wood melamine) generated during different wood operations (e.g., sanding and sawing) in an experimental chamber under controlled conditions. In the following field study, we monitored 31 male wood workers (furniture and construction workers) exposed to wood dust during their professional activity for two consecutive work shifts. Additionally, we recruited 19 non exposed workers as a control group. We collected from each participant blood samples, and nasal and buccal cell samples. They answered a questionnaire including demographic and life-style data and occupational exposure (current and past). Personal wood dust samples were collected using a closed-face cassette. We used gravimetrie analysis to determine the personal wood dust concentrations and capillary gas chromatography - mass spectrometry analysis to determine PAH concentrations. Genotoxicity was assessed with the micronucleus (MN) assay for nasal and buccal cells and with the comet assay for blood samples. Our results show that PAH (some of them carcinogenic) were present in dust from all six wood materials tested, yet at different concentrations depending on the material. The highest concentration was found in dust from wood melamine (7.95 ppm) and the lowest in MDF (0.24 ppm). Our results also show that workers were individually exposed to low concentrations of PAHs (37.5-119.8 ng m"3) during wood working operations, whereas the concentrations of inhalable dust were relatively high (geometric mean 2.8 mg m"3). Concerning the genotoxicity, wood workers had a significantly higher MN frequency in nasal and buccal cells than the workers in the control group (odds ratio for nasal cells 3.1 (95%CI 1.8-5.1) and buccal cells 1.8 (95%CI 1.3-2.4)). Furthermore, the comet assay showed that workers who reported to be exposed to dust from wooden boards (MDF and wood melamine) had significantly higher DNA damage than both the workers exposed to natural woods (fir, spruce, beech, oak) and the workers in the control group (p < 0.01). Finally, MN frequency in nasal and buccal cells increased with increasing years of exposure to wood dust. However, there was no genotoxic dose-response relationship with the per present day wood dust and PAH exposure. This study shows that PAH exposure occurred during wood working operations. Workers exposed to wood dust, and thus to PAH, had a higher risk for genotoxicity compared to the control group. Since some of the detected PAH are potentially carcinogenic, PAH generated from operations on wood materials may be one of the causative agents for the observed increased genotoxicity in wood workers. Since increased genotoxicity is manifested in an increased MN frequency, the MN assay in nasal and buccal cells may become a relevant biomonitoring tool in the future for early detection of SNC risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Environmental conditions play a crucial role in mite growth, and optimal environmental control is key in the prevention of airway inflammation in chronic allergic rhinoconjunctivitis or asthma. OBJECTIVE: To evaluate the relationship between building energy performance and indoor mite allergen concentration in a cross-sectional study. METHODS: Major allergen concentration (Der f 1, Der p 1, mite group 2, Fel d 1 and Bla g 2) was determined by quantitative dot blot analysis from mattress and carpet dust samples in five buildings designed for low energy use (LEB) and in six control buildings (CB). Inhabitants had received 4 weeks prior to mite measurement a personal validated questionnaire related to the perceived state of health and comfort of living. RESULTS: Cumulative mite allergen concentration (with Der f 1 as the major contributor) was significantly lower in LEB as compared with CB both in mattresses and in carpets. In contrast, the two categories of buildings did not differ in Bla g 2 and Fel d 1 concentration, in the amount of dust and airborne mould collected. Whereas temperature was higher in LEB, relative humidity was significantly lower than in CB. Perceived overall comfort was better in LEB. CONCLUSIONS: Major mite allergen Der f 1 preferentially accumulates in buildings not specifically designed for low energy use, reaching levels at risk for sensitization. We hypothesize that controlled mechanical ventilation present in all audited LEB may favour lower air humidity and hence lower mite growth and allergen concentration, while preserving optimal perceived comfort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pigs are very often colonized by Staphylococcus aureus and transmission of such pig-associated S. aureus to humans can cause serious medical, hygiene, and economic problems. The transmission route of zoonotic pathogens colonizing farm animals to humans is not well established and bioaerosols could play an important role. The aim of this study was to assess the potential occupational risk of working with S. aureus-colonized pigs in Switzerland. We estimated the airborne contamination by S. aureus in 37 pig farms (20 nursery and 17 fattening units; 25 in summer, 12 in winter). Quantification of total airborne bacterial DNA, airborne Staphylococcus sp. DNA, fungi, and airborne endotoxins was also performed. In this experiment, the presence of cultivable airborne methicillin-resistant S. aureus (MRSA) CC398 in a pig farm in Switzerland was reported for the first time. Airborne methicillin-sensitive S. aureus (MSSA) was found in ~30% of farms. The average airborne concentration of DNA copy number of total bacteria and Staphylococcus sp. measured by quantitative polymerase chain reaction was very high, respectively reaching values of 75 (± 28) × 10(7) and 35 (± 9.8) × 10(5) copy numbers m(-3) in summer and 96 (± 19) × 10(8) and 40 (± 12) × 10(6) copy numbers m(-3) in winter. Total mean airborne concentrations of endotoxins (1298 units of endotoxin m(-3)) and fungi (5707 colony-forming units m(-3)) exceeded the Swiss recommended values and were higher in winter than in summer. In conclusion, Swiss pig farmers will have to tackle a new emerging occupational risk, which could also have a strong impact on public health. The need to inform pig farmers about biological occupational risks is therefore crucial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Diisononyl phthalate (DiNP) is primarily used as a plasticizer in polyvinyl chloride (PVC) materials. While information is available on general population exposure to DiNP, occupational exposure data are lacking. We present DiNP metabolite urinary concentrations in PVC processing workers, estimate DiNP daily intake for these workers, and compare worker estimates to other populations. METHODS: We assessed DiNP exposure in participants from two companies that manufactured PVC materials, a PVC film manufacturer (n = 25) and a PVC custom compounder (n = 12). A mid-shift and end-shift urine sample was collected from each participant and analyzed for the DiNP metabolite mono(carboxy-isooctyl) phthalate (MCiOP). Mixed models were used to assess the effect on MCiOP concentrations of a worker being assigned to (1) a task using DiNP and (2) a shift where DiNP was used. A simple pharmacokinetic model was used to estimate DiNP daily intake from the MCiOP concentrations. RESULTS: Creatinine-adjusted MCiOP urinary concentrations ranged from 0.42-80 μg/g in PVC film and from 1.11-13.4 μg/g in PVC compounding. PVC film participants who worked on a task using DiNP (n = 7) had the highest MCiOP geometric mean (GM) end-shift concentration (25.2 μg/g), followed by participants who worked on a shift where DiNP was used (n = 11) (17.7 μg/g) as compared to participants with no task (2.92 μg/g) or shift (2.08 μg/g) exposure to DiNP. The GM end-shift MCiOP concentration in PVC compounding participants (4.80 μg/g) was comparable to PVC film participants with no task or shift exposure to DiNP. Because no PVC compounding participants were assigned to tasks using DINP on the day sampled, DiNP exposure in this company may be underestimated. The highest DiNP intake estimate was 26 μg/kg/day. CONCLUSION: Occupational exposure to DiNP associated with PVC film manufacturing tasks were substantially higher (sixfold to tenfold) than adult general population exposures; however, all daily intake estimates were less than 25% of current United States or European acceptable or tolerable daily intake estimates. Further characterization of DiNP occupational exposures in other industries is recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Some countries have recently extended smoke-free policies to particular outdoor settings; however, there is controversy regarding whether this is scientifically and ethically justifiable. Objectives: The objective of the present study was to review research on secondhand smoke (SHS) exposure in outdoor settings. Data sources: We conducted different searches in PubMed for the period prior to September 2012. We checked the references of the identified papers, and conducted a similar search in Google Scholar. Study selection: Our search terms included combinations of"secondhand smoke,""environmental tobacco smoke,""passive smoking" OR"tobacco smoke pollution" AND"outdoors" AND"PM" (particulate matter),"PM2.5" (PM with diameter ≤ 2.5 µm),"respirable suspended particles,""particulate matter,""nicotine,""CO" (carbon monoxide),"cotinine,""marker,""biomarker" OR"airborne marker." In total, 18 articles and reports met the inclusion criteria. Results: Almost all studies used PM2.5 concentration as an SHS marker. Mean PM2.5 concentrations reported for outdoor smoking areas when smokers were present ranged from 8.32 to 124 µg/m3 at hospitality venues, and 4.60 to 17.80 µg/m3 at other locations. Mean PM2.5 concentrations in smoke-free indoor settings near outdoor smoking areas ranged from 4 to 120.51 µg/m3. SHS levels increased when smokers were present, and outdoor and indoor SHS levels were related. Most studies reported a positive association between SHS measures and smoker density, enclosure of outdoor locations, wind conditions, and proximity to smokers. Conclusions: The available evidence indicates high SHS levels at some outdoor smoking areas and at adjacent smoke-free indoor areas. Further research and standardization of methodology is needed to determine whether smoke-free legislation should be extended to outdoor settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Measurement of serum cotinine, a major metabolite of nicotine, provides a valid marker for quantifying exposure to tobacco smoke. Exposure to tobacco smoke causes vascular damage by multiple mechanisms, and it has been acknowledged as a risk factor for atherosclerosis. Multifactorial atherosclerosis begins in childhood, but the relationship between exposure to tobacco smoke and arterial changes related to early atherosclerosis have not been studied in children. Aims: The aim of the present study was to evaluate exposure to tobacco smoke with a biomarker, serum cotinine concentration, and its associations with markers of subclinical atherosclerosis and lipid profile in school-aged children and adolescents. Subjects and Methods: Serum cotinine concentration was measured using a gas chromatographic method annually between the ages 8 and 13 years in 538-625 children participating since infancy in a randomized, prospective atherosclerosis prevention trial STRIP (Special Turku coronary Risk factor Intervention Project). Conventional atherosclerosis risk factors were measured repeatedly. Vascular ultrasound studies were performed among 402 healthy 11-year-old children and among 494 adolescents aged 13 years. Results: According to serum cotinine measurements, a notable number of the school aged children and adolescents were exposed to tobacco smoke, but the exposure levels were only moderate. Exposure to tobacco smoke was associated with decreased endothelial function as measured with flow-mediated dilation of the brachial artery, decreased elasticity of the aorta, and increased carotid and aortic intima-media thickness. Longitudinal exposure to tobacco smoke was also related with increased apolipoprotein B and triglyceride levels in 13-year-old adolescents, whose body mass index and nutrient intakes did not differ. Conclusions: These findings suggest that exposure to tobacco smoke in childhood may play a significant role in the development of early atherosclerosis. Key Words: arterial elasticity, atherosclerosis, children, cotinine, endothelial function, environmental tobacco smoke, intima-media thickness, risk factors, ultrasound