955 resultados para espectroscopia
Resumo:
La espectroscopia de reflectancia difusa (TRR o TDRS), técnica no destructiva ampliamente usada en aplicaciones biomédicas, se aplica por primera vez en este trabajo a la detección de propiedades ópticas relacionadas con parámetros de calidad en frutas. Mediante el uso de tecnologías de conteo de fotones y sistemas de iluminación láser, se ha desarrollado un procedimiento para registrar a la vez la cantidad de luz absorbida y la magnitud de dispersión de los fotones por el tejido atravesado. Los resultados previos indican adecuada sensibilidad del sistema a cambios en la fruta de firmeza, compuestos químicos y color, lo que sugiere un amplio potencial de desarrollo de sensores para la industria agroalimentaria.
Resumo:
La determinación no destructiva de la calidad interna de la fruta ha sido un objetivo prioritario en las investigaciones recientes (Abbott, 1999). La espectroscopia en el infrarrojo (NIR) es aplicable a la cuantificación de compuestos químicos en alimentos; por otro lado se ha comprobado que el uso de láseres es interesante para la estimación no destructiva de la firmeza de los frutos. Sin embargo estas técnicas ópticas más tradicionales tienen el inconveniente de que miden la intensidad de luz transmitida sin poder diferenciar el efecto de la absorción óptica del efecto de la dispersión espacial que sufre la luz en el interior de los tejidos, lo cual dificulta la estimación independiente de aspectos físicos y químicos. La espectroscopia con resolución temporal es una técnica óptica desarrollada para el diagnóstico en medicina, que permite diferenciar ambos fenómenos (absorción y dispersión), proporcionando una caracterización óptica completa de los tejidos. El objetivo del presente trabajo ha sido la aplicación de esta técnica a frutas y hortalizas, y el desarrollo de modelos matemáticos de estimación no destructiva de su calidad interna para su uso en procesos de clasificación.
Resumo:
En el mundo existen ciertos grupos de población que muestran una hipersensibilidad a determinados alimentos, y cuya ingestión accidental desencadena, una respuesta del tipo “shock” anafiláctico. Esto ha obligado a las empresas alimentarias a estudiar de forma exhaustiva la gestión del riesgo de todos sus productos. El cacahuete es uno de los principales alérgenos en la industria. La espectroscopia NIR se ha utilizado recientemente para analizar la cantidad total de aceite y ácido grasos en cacahuete intacto (Sudaram y colaboradores, 2012). El objetivo de este trabajo es estudiar métodos no destructivos basados en espectroscopia para la detección de trazas de cacahuete en alimentos en polvo, como complemento al método genético reacción en cadena de la polimerasa en tiempo real (Real Time -PCR) desarrollado por el grupo de investigación TRADETBIO de la UCM, en el marco de colaboración en el Campus de Excelencia Internacional Moncloa. Los materiales utilizados fueron cacahuetes de cinco variedades de origen geográfico distinto y sometidas a diferentes tratamientos, proporcionadas por el Instituto de Materiales de Referencia CE, así como leche en polvo, cacao, harina de trigo, y cacahuete de diferentes marcas comerciales. Para todos ellos, se adquirieron dos series de espectros: en el infrarrojo cercano NIR (896-1686 nm), y los extraídos de imágenes hiperespectrales HIS (400-1000nm). La espectroscopia VIS se mostró sensible a las diferencias en el cacahuete en cuanto a su origen y/o tratamiento, ya que inducen cambios en el color, siendo inviable la separación entre los cacahuetes blanqueados, la leche y la harina en esta región espectral. Las principales diferencias entre los cacahuetes y el resto de ingredientes alimentarios se han encontrado en el rango NIR, específicamente en las longitudes de onda de (1207-1210 nm), relacionadas con una región de absorción de los lípidos. El infrarrojo permite 100% de segregación de cualquier tipo de cacahuete respecto al resto de los ingredientes alimentarios. La espectroscopia NIR combinada con las técnicas de imagen (hiperespectral o multiespectral) podría por tanto, ser aplicado para detectar trazas de cacahuetes en alimentos en polvo, no influyendo su origen y/o tratamiento, ya que es capaz de separar cualquier cacahuete del resto de los ingredientes alimentarios. Este método podría ser una técnica de cribado previo al método PCR de elevado coste.
Resumo:
This work was developed with the objective of proposing a simple, fast and versatile methodological routine using near-infrared spectroscopy (NIR) combined with multivariate analysis for the determination of ash content, moisture, protein and total lipids present in the gray shrimp (Litopenaeus vannamei ) which is conventionally performed gravimetrically after ashing at 550 ° C gravimetrically after drying at 105 ° C for the determination of moisture gravimetrically after a Soxhlet extraction using volumetric and after digestion and distillation Kjedhal respectively. Was first collected the spectra of 63 samples processed boiled shrimp Litopenaeus vannamei species. Then, the determinations by conventional standard methods were carried out. The spectra centered average underwent multiplicative scattering correction of light, smoothing Saviztky-Golay 15 points and first derivative, eliminated the noisy region, the working range was from 1100,36 to 2502,37 nm. Thus, the PLS models for predicting ash showed R 0,9471; 0,1017 and RMSEP RMSEC 0,1548; Moisture R was 0,9241; 2,5483 and RMSEP RMSEC 4,1979; R protein to 0,9201; 1,9391 and RMSEP RMSEC 2,7066; for lipids R 0,8801; 0,2827 and RMSEP RMSEC 0,2329 So that the results showed that the relative errors found between the reference method and the NIR were small and satisfactory. These results are an excellent indication that you can use the NIR to these analyzes, which is quite advantageous, since conventional techniques are time consuming, they spend a lot of reagents and involve a number of professionals, which requires a reasonable runtime while after the validation of the methodology execution using NIR reduces all this time to a few minutes, saving reagents, time and without waste generation, and that this is a non-destructive technique.
Resumo:
In this work, it was developed and validated methodologies that were based on the use of Infrared Spectroscopy Mid (MIR) combined with multivariate calibration Square Partial Least (PLS) to quantify adulterants such as soybean oil and residual soybean oil in methyl and ethyl palm biodiesels in the concentration range from 0.25 to 30.00 (%), as well as to determine methyl and ethyl palm biodiesel content in their binary mixtures with diesel in the concentration range from 0.25 to 30.00 (%). The prediction results showed that PLS models constructed are satisfactory. Errors Mean Square Forecast (RMSEP) of adulteration and content determination showed values of 0.2260 (%), with mean error (EM) with values below 1.93 (%). The models also showed a strong correlation between actual and predicted values, staying above 0.99974. No systematic errors were observed, in accordance to ASTM E1655- 05. Thus the built PLS models, may be a promising alternative in the quality control of this fuel for possible adulterations or to content determination.
Resumo:
Biodiesel is a renewable fuel derived from vegetable oils or animal fats, which can be a total or partial substitute for diesel. Since 2005, this fuel was introduced in the Brazilian energy matrix through Law 11.097 that determines the percentage of biodiesel added to diesel oil as well as monitoring the insertion of this fuel in market. The National Agency of Petroleum, Natural Gas and Biofuels (ANP) establish the obligation of adding 7% (v/v) of biodiesel to diesel commercialized in the country, making crucial the analytical control of this content. Therefore, in this study were developed and validated methodologies based on the use of Mid Infrared Spectroscopy (MIR) and Multivariate Calibration by Partial Least Squares (PLS) to quantify the methyl and ethyl biodiesels content of cotton and jatropha in binary blends with diesel at concentration range from 1.00 to 30.00% (v/v), since this is the range specified in standard ABNT NBR 15568. The biodiesels were produced from two routes, using ethanol or methanol, and evaluated according to the parameters: oxidative stability, water content, kinematic viscosity and density, presenting results according to ANP Resolution No. 45/2014. The built PLS models were validated on the basis of ASTM E1655-05 for Infrared Spectroscopy and Multivariate Calibration and ABNT NBR 15568, with satisfactory results due to RMSEP (Root Mean Square Error of Prediction) values below 0.08% (<0.1%), correlation coefficients (R) above 0.9997 and the absence of systematic error (bias). Therefore, the methodologies developed can be a promising alternative in the quality control of this fuel.
Resumo:
Se investiga la concentración de cationes (Ca,Fe,K,Mg),en el frijol negro,(Phaseolus vulgaris L. var. Tineco), usando un analizador de absorción atómica. Para tal efecto se procede a secar la muestra y luego se digiere en un medio acido. Se preparan las soluciones standard correspondiente a los cationes que se quiere investigar y luego se comparan estas concentraciones con las concentraciones de los iones en la muestra. El cálculo de la concentración (desconocida), de los cationes en la muestra, se hace por medio de simple aritmética. En este trabajo se reporta la cantidad en p. p. m. de los elementos arriba mencionados, presente en un gramo de la muestra original. Los resultados obtenidos fueron: Fe = 337.5 p. p. m. ; Ca = 150 p. p. m. ; Mg = 150 p. p. m. y K = 4X104p. p. m.
Resumo:
Considering the social and economic importance that the milk has, the objective of this study was to evaluate the incidence and quantifying antimicrobial residues in the food. The samples were collected in dairy industry of southwestern Paraná state and thus they were able to cover all ten municipalities in the region of Pato Branco. The work focused on the development of appropriate models for the identification and quantification of analytes: tetracycline, sulfamethazine, sulfadimethoxine, chloramphenicol and ampicillin, all antimicrobials with health interest. For the calibration procedure and validation of the models was used the Infrared Spectroscopy Fourier Transform associated with chemometric method based on Partial Least Squares regression (PLS - Partial Least Squares). To prepare a work solution antimicrobials, the five analytes of interest were used in increasing doses, namely tetracycline from 0 to 0.60 ppm, sulfamethazine 0 to 0.12 ppm, sulfadimethoxine 0 to 2.40 ppm chloramphenicol 0 1.20 ppm and ampicillin 0 to 1.80 ppm to perform the work with the interest in multiresidues analysis. The performance of the models constructed was evaluated through the figures of merit: mean square error of calibration and cross-validation, correlation coefficients and offset performance ratio. For the purposes of applicability in this work, it is considered that the models generated for Tetracycline, Sulfadimethoxine and Chloramphenicol were considered viable, with the greatest predictive power and efficiency, then were employed to evaluate the quality of raw milk from the region of Pato Branco . Among the analyzed samples by NIR, 70% were in conformity with sanitary legislation, and 5% of these samples had concentrations below the Maximum Residue permitted, and is also satisfactory. However 30% of the sample set showed unsatisfactory results when evaluating the contamination with antimicrobials residues, which is non conformity related to the presence of antimicrobial unauthorized use or concentrations above the permitted limits. With the development of this work can be said that laboratory tests in the food area, using infrared spectroscopy with multivariate calibration was also good, fast in analysis, reduced costs and with minimum generation of laboratory waste. Thus, the alternative method proposed meets the quality concerns and desired efficiency by industrial sectors and society in general.
Resumo:
The routine analysis for quantization of organic acids and sugars are generally slow methods that involve the use and preparation of several reagents, require trained professional, the availability of special equipment and is expensive. In this context, it has been increasing investment in research whose purpose is the development of substitutive methods to reference, which are faster, cheap and simple, and infrared spectroscopy have been highlighted in this regard. The present study developed multivariate calibration models for the simultaneous and quantitative determination of ascorbic acid, citric, malic and tartaric and sugars sucrose, glucose and fructose, and soluble solids in juices and fruit nectars and classification models for ACP. We used methods of spectroscopy in the near infrared (Near Infrared, NIR) in association with the method regression of partial least squares (PLS). Were used 42 samples between juices and fruit nectars commercially available in local shops. For the construction of the models were performed with reference analysis using high-performance liquid chromatography (HPLC) and refractometry for the analysis of soluble solids. Subsequently, the acquisition of the spectra was done in triplicate, in the spectral range 12500 to 4000 cm-1. The best models were applied to the quantification of analytes in study on natural juices and juice samples produced in the Paraná Southwest Region. The juices used in the application of the models also underwent physical and chemical analysis. Validation of chromatographic methodology has shown satisfactory results, since the external calibration curve obtained R-square value (R2) above 0.98 and coefficient of variation (%CV) for intermediate precision and repeatability below 8.83%. Through the Principal Component Analysis (PCA) was possible to separate samples of juices into two major groups, grape and apple and tangerine and orange, while for nectars groups separated guava and grape, and pineapple and apple. Different validation methods, and pre-processes that were used separately and in combination, were obtained with multivariate calibration models with average forecast square error (RMSEP) and cross validation (RMSECV) errors below 1.33 and 1.53 g.100 mL-1, respectively and R2 above 0.771, except for malic acid. The physicochemical analysis enabled the characterization of drinks, including the pH working range (variation of 2.83 to 5.79) and acidity within the parameters Regulation for each flavor. Regression models have demonstrated the possibility of determining both ascorbic acids, citric, malic and tartaric with successfully, besides sucrose, glucose and fructose by means of only a spectrum, suggesting that the models are economically viable for quality control and product standardization in the fruit juice and nectars processing industry.