942 resultados para erotic-obscene lexicon
Resumo:
Aunque la crítica no ha encontrado una lectura en clave erótica para el carmen V, el uso de la palabra 'basia' sugiere la presencia de un significado obsceno. El estudio propone la revisión del caso de los besos en carmen V. Advierto queCno se trata de negar que donde Catulo dice 'besos' quiera decir y diga efectivamente 'besos' -pues él lo dice-, sino de introducir este nuevo elemento: el Catulo polisémico de siempre ha dejado abierta la posibilidad de descifrar algunos mensajes o sentidos ocultos en el alcance semántico del término basia. He intentado, para ello, seguir un razonamiento ordenado que culmina en un intento de nueva versión castellana del poema
Resumo:
Aunque la crítica no ha encontrado una lectura en clave erótica para el carmen V, el uso de la palabra 'basia' sugiere la presencia de un significado obsceno. El estudio propone la revisión del caso de los besos en carmen V. Advierto queCno se trata de negar que donde Catulo dice 'besos' quiera decir y diga efectivamente 'besos' -pues él lo dice-, sino de introducir este nuevo elemento: el Catulo polisémico de siempre ha dejado abierta la posibilidad de descifrar algunos mensajes o sentidos ocultos en el alcance semántico del término basia. He intentado, para ello, seguir un razonamiento ordenado que culmina en un intento de nueva versión castellana del poema
Resumo:
Aunque la crítica no ha encontrado una lectura en clave erótica para el carmen V, el uso de la palabra 'basia' sugiere la presencia de un significado obsceno. El estudio propone la revisión del caso de los besos en carmen V. Advierto queCno se trata de negar que donde Catulo dice 'besos' quiera decir y diga efectivamente 'besos' -pues él lo dice-, sino de introducir este nuevo elemento: el Catulo polisémico de siempre ha dejado abierta la posibilidad de descifrar algunos mensajes o sentidos ocultos en el alcance semántico del término basia. He intentado, para ello, seguir un razonamiento ordenado que culmina en un intento de nueva versión castellana del poema
Resumo:
This paper presents a proposal for a recognition model for the appraisal value of sentences. It is based on splitting the text into independent sentences (full stops) and then analysing the appraisal elements contained in each sentence according to the previous value in the appraisal lexicon. In this lexicon, positive words are assigned a positive coefficient (+1) and negative words a negative coefficient (-1). We take into account word such as ?too?, ?little? (when it is not ?a bit?), ?less?, and ?nothing? than can modify the polarity degree of lexical unit when appear in the nearby environment. If any of these elements are present, then the previous coefficient will be multiplied by (-1), that is, they will change their sign. Our results show a nearly theoretical effectiveness of 90%, despite not achieving the recognition (or misrecognition) of implicit elements. These elements represent approximately 4% of the total of sentences analysed for appraisal and include the errors in the recognition of coordinated sentences. On the one hand, we found that 3.6 % of the sentences could not be recognized because they use different connectors than those included in the model; on the other hand, we found that in 8.6% of the sentences despite using some of the described connectors could not be applied the rules we have developed. The percentage relative to the whole group of appraisal sentences in the corpus was approximately of 5%.
Resumo:
Copia digital: Biblioteca valenciana, 2010
Resumo:
This paper presents an approach to create what we have called a Unified Sentiment Lexicon (USL). This approach aims at aligning, unifying, and expanding the set of sentiment lexicons which are available on the web in order to increase their robustness of coverage. One problem related to the task of the automatic unification of different scores of sentiment lexicons is that there are multiple lexical entries for which the classification of positive, negative, or neutral {P, Z, N} depends on the unit of measurement used in the annotation methodology of the source sentiment lexicon. Our USL approach computes the unified strength of polarity of each lexical entry based on the Pearson correlation coefficient which measures how correlated lexical entries are with a value between 1 and -1, where 1 indicates that the lexical entries are perfectly correlated, 0 indicates no correlation, and -1 means they are perfectly inversely correlated and so is the UnifiedMetrics procedure for CPU and GPU, respectively. Another problem is the high processing time required for computing all the lexical entries in the unification task. Thus, the USL approach computes a subset of lexical entries in each of the 1344 GPU cores and uses parallel processing in order to unify 155802 lexical entries. The results of the analysis conducted using the USL approach show that the USL has 95.430 lexical entries, out of which there are 35.201 considered to be positive, 22.029 negative, and 38.200 neutral. Finally, the runtime was 10 minutes for 95.430 lexical entries; this allows a reduction of the time computing for the UnifiedMetrics by 3 times.
Resumo:
This approach aims at aligning, unifying and expanding the set of sentiment lexicons which are available on the web in order to increase their robustness of coverage. A sentiment lexicon is a critical and essential resource for tagging subjective corpora on the web or elsewhere. In many situations, the multilingual property of the sentiment lexicon is important because the writer is using two languages alternately in the same text, message or post. Our USL approach computes the unified strength of polarity of each lexical entry based on the Pearson correlation coefficient which measures how correlated lexical entries are with a value between 1 and -1, where 1 indicates that the lexical entries are perfectly correlated, 0 indicates no correlation, and -1 means they are perfectly inversely correlated and the UnifiedMetrics procedure for CPU and GPU, respectively.
Resumo:
Title copied from the volume's title page.
Resumo:
Title copied from the volume's title page.
Resumo:
Title copied from the volume's title page.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.