923 resultados para equilibrium combustion model
Resumo:
This dissertation consists of three theoretical essays on immigration, international trade and political economy. The first two essays analyze the political economy of immigration in developed countries. The third essay explores new ground on the effects of labor liberalization in developing countries. Trade economists have witnessed remarkable methodological developments in mathematical and game theoretical models during the last seventy years. This dissertation benefits from these advances to analyze economic issues related to immigration. The first essay applies a long run general equilibrium trade model similar to Krugman (1980), and blends it with the median voter ala-Mayer (1984) framework. The second essay uses a short run general equilibrium specific factor trade model similar to Jones (1975) and incorporates it with the median voter model similar to Benhabib (1997). The third essay employs a five stage game theoretical approach similar to Vogel (2007) and solves it by the method of backward induction. The first essay shows that labor liberalization is more likely to come about in societies that have more taste for varieties, and that workers and capital owners could share the same positive stance toward labor liberalization. In a dynamic model, it demonstrates that the median voter is willing to accept fewer immigrants in the first period in order to preserve her domestic political influence in the second period threatened by the naturalization of these immigrants. The second essay shows that the liberalization of labor depends on the host country's stock and distribution of capital, and the number of groups of skilled workers within each country. I demonstrate that the more types of goods both countries produce, the more liberal the host country is toward immigration. The third essay proposes a theory of free movement of goods and labor between two economies with imperfect labor contracts. The heart of my analysis lies in the determinants of talent development where individuals' decisions to emigrate are related to the fixed costs of emigration. Finally, free trade and labor affect income via an indirect effect on individuals' incentives to invest in the skill levels and a direct effect on the prices of goods.
Resumo:
The economic development of any region involves some consequences to the environment. The choice of a socially optimal development plan must consider a measure of the strategy's environmental impact. This dissertation tackles this problem by examining environmental impacts of new production activities. The study uses the experience of the Carajás region in the north of Brazil. This region, which prior to the 1960's was an isolated outpost of the Amazon area, was integrated to the rest of the country with a non-sophisticated but strategic road system and eventually became the second largest iron ore mining area in the world. Finally, in the 1980's, the area was linked, by way of a railroad, to the nearest seaport along the Atlantic Ocean. The consequence of such changes was a burst of economic growth along the railroad Corridor and neighboring areas. In this work, a Social Accounting Matrix (SAM) is used to construct a 2-region (Corridor and surrounding area), fixed price, Computable General Equilibrium (CGE) Model to examine the relationship between production and pollution by measuring the different pollution effects of alternative growth strategies. SAMs are a very useful tool to examine the environmental impacts of development by linking production activities to measurable indices of natural resource degradation. The simulation results suggest that the strategies leading to faster economic growth in the short run are also those that lead to faster rates of environmental degradation. The simulations also show that the strategies that leads to faster rates of short run growth do so at the price of a rate of environmental depletion that is unsustainable from a long run perspective. These results, therefore, support the concern expressed by environmental economists and policy makers regarding the possible trade-offs between economic growth and environmental preservation. This stresses the need for a careful analysis of the environmental impacts of alternative growth strategies. ^
Resumo:
Context: Model atmosphere analyses have been previously undertaken for both Galactic and extragalactic B-type supergiants. By contrast, little attention has been given to a comparison of the properties of single supergiants and those that are members of multiple systems.
Aims: Atmospheric parameters and nitrogen abundances have been estimated for all the B-type supergiants identified in the VLT-FLAMES Tarantula survey. These include both single targets and binary candidates. The results have been analysed to investigate the role of binarity in the evolutionary history of supergiants.
Methods: tlusty non-local thermodynamic equilibrium (LTE) model atmosphere calculations have been used to determine atmospheric parameters and nitrogen abundances for 34 single and 18 binary supergiants. Effective temperatures were deduced using the silicon balance technique, complemented by the helium ionisation in the hotter spectra. Surface gravities were estimated using Balmer line profiles and microturbulent velocities deduced using the silicon spectrum. Nitrogen abundances or upper limits were estimated from the Nii spectrum. The effects of a flux contribution from an unseen secondary were considered for the binary sample. Results. We present the first systematic study of the incidence of binarity for a sample of B-type supergiants across the theoretical terminal age main sequence (TAMS). To account for the distribution of effective temperatures of the B-type supergiants it may be necessary to extend the TAMS to lower temperatures. This is also consistent with the derived distribution of mass discrepancies, projected rotational velocities and nitrogen abundances, provided that stars cooler than this temperature are post-red supergiant objects. For all the supergiants in the Tarantula and in a previous FLAMES survey, the majority have small projected rotational velocities. The distribution peaks at about 50 km s-1 with 65% in the range 30 km s-1 ≤ νe sin i ≤ 60 km s-1. About ten per cent have larger ve sin i (≥100 km s-1), but surprisingly these show little or no nitrogen enhancement. All the cooler supergiants have low projected rotational velocities of ≤70 km s-1 and high nitrogen abundance estimates, implying that either bi-stability braking or evolution on a blue loop may be important. Additionally, there is a lack of cooler binaries, possibly reflecting the small sample sizes. Single-star evolutionary models, which include rotation, can account for all of the nitrogen enhancement in both the single and binary samples. The detailed distribution of nitrogen abundances in the single and binary samples may be different, possibly reflecting differences in their evolutionary history.
Conclusions: The first comparative study of single and binary B-type supergiants has revealed that the main sequence may be significantly wider than previously assumed, extending to Teff = 20 000 K. Some marginal differences in single and binary atmospheric parameters and abundances have been identified, possibly implying non-standard evolution for some of the sample. This sample as a whole has implications for several aspects of our understanding of the evolutionary status of blue supergiants.
Resumo:
A large eddy simulation is performed to study the deflagration to detonation transition phenomenon in an obstructed channel containing premixed stoichiometric hydrogen–air mixture. Two-dimensional filtered reactive Navier–Stokes equations are solved utilizing the artificially thickened flame approach (ATF) for modeling sub-grid scale combustion. To include the effect of induction time, a 27-step detailed mechanism is utilized along with an in situ adaptive tabulation (ISAT) method to reduce the computational cost due to the detailed chemistry. The results show that in the slow flame propagation regime, the flame–vortex interaction and the resulting flame folding and wrinkling are the main mechanisms for the increase of the flame surface and consequently acceleration of the flame. Furthermore, at high speed, the major mechanisms responsible for flame propagation are repeated reflected shock–flame interactions and the resulting baroclinic vorticity. These interactions intensify the rate of heat release and maintain the turbulence and flame speed at high level. During the flame acceleration, it is seen that the turbulent flame enters the ‘thickened reaction zones’ regime. Therefore, it is necessary to utilize the chemistry based combustion model with detailed chemical kinetics to properly capture the salient features of the fast deflagration propagation.
Resumo:
The paper develops a Dynamic Stochastic General Equilibrium (DSGE) model, which assesses the macroeconomic and labor market effects derived from simulating a positive shock to the stochastic component of the mining-energy sector productivity. Calibrating the model for the Colombian economy, this shock generates a whole increase in formal wages and a raise in tax revenues, expanding total consumption of the household members. These facts increase non-tradable goods prices relative to tradable goods prices, then real exchange rate decreases (appreciation) and occurs a displacement of productive resources from the tradable (manufacturing) sector to the non-tradable sector, followed by an increase in formal GDP and formal job gains. This situation makes the formal sector to absorb workers from the informal sector through the non-tradable formal subsector, which causes informal GDP to go down. As a consequence, in the net consumption falls for informal workers, which leads some members of the household not to offer their labor force in the informal sector but instead they prefer to keep unemployed. Therefore, the final result on the labor market is a decrease in the number of informal workers, of which a part are in the formal sector and the rest are unemployed.
Resumo:
Firms in China within the same industry but with different ownership and size have very different production functions and can face very different emission regulations and financial conditions. This fact has largely been ignored in most of the existing literature on climate change. Using a newly augmented Chinese input–output table in which information about firm size and ownership are explicitly reported, this paper employs a dynamic computable general equilibrium (CGE) model to analyze the impact of alternative climate policy designs with respect to regulation and financial conditions on heterogeneous firms. The simulation results indicate that with a business-as-usual regulatory structure, the effectiveness and economic efficiency of climate policies is significantly undermined. Expanding regulation to cover additional firms has a first-order effect of improving efficiency. However, over-investment in energy technologies in certain firms may decrease the overall efficiency of investments and dampen long-term economic growth by competing with other fixed-capital investments for financial resources. Therefore, a market-oriented arrangement for sharing emission reduction burden and a mechanism for allocating green investment is crucial for China to achieve a more ambitious emission target in the long run.
Resumo:
Utilization of biogas can provide a source of renewable energy in both heat and power generation. Combustion of biogas in land-based gas turbines for power generation is a promising approach to reducing greenhouse gases and US dependence on foreign-source fossil fuels. Biogas is a byproduct from the decomposition of organic matter and consists primarily of CH4 and large amounts of CO2. The focus of this research was to design a combustion device and investigate the effects of increasing levels of CO2 addition to the combustion of pure CH4 with air. Using an atmospheric-pressure, swirl-stabilized dump combustor, emissions data and flame stability limitations were measured and analyzed. In particular, CO2, CO, and NOx emissions were the main focus of the combustion products. Additionally, the occurrence of lean blowout and combustion pressure oscillations, which impose significant limitations in operation ranges for actual gas turbines, was observed. Preliminary kinetic and equilibrium modeling was performed using Cantera and CEA for the CH4/CO2/Air combustion systems to analyze the effect of CO2 upon adiabatic flame temperature and emission levels. The numerical and experimental results show similar dependence of emissions on equivalence ratio, CO2 addition, inlet air temperature, and combustor residence time. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Two aspects of hydrogen-air non-equilibrium chemistry related to scramjets are nozzle freezing and a process called 'kinetic afterburning' which involves continuation of combustion after expansion in the nozzle. These effects were investigated numerically and experimentally with a model scramjet combustion chamber and thrust nozzle combination. The overall model length was 0.5m, while precombustion Mach numbers of 3.1 +/- 0.3 and precombustion temperatures ranging from 740K to 1,400K were involved. Nozzle freezing was investigated at precombustion pressures of 190kPa and higher, and it was found that the nozzle thrusts were within 6% of values obtained from finite rate numerical calculations, which were within 7% of equilibrium calculations. When precombustion pressures of 70kPa or less were used, kinetic afterburning was found to be partly responsible for thrust production, in both the numerical calculations and the experiments. Kinetic afterburning offers a means of extending the operating Mach number range of a fixed geometry scramjet.
Resumo:
Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging|allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.
Resumo:
High frequency, miniature, pulse tube cryocoolers are extensively used in space applications because of their simplicity. Parametric studies of inertance type pulse tube cooler are performed with different length-to-diameter ratios of the pulse tube with the help of the FLUENT (R) package. The local thermal non-equilibrium of the gas and the matrix is taken into account for the modeling of porous zones, in addition to the wall thickness of the components. Dynamic characteristics and the actual mechanism of energy transfer in pulse are examined with the help of the pulse tube wall time constant. The heat interaction between pulse tube wall and the oscillating gas, leading to surface heat pumping, is quantified. The axial heat conduction is found to reduce the performance of the pulse tube refrigerator. The thermal non-equilibrium predicts a higher cold heat exchanger temperature compared to thermal equilibrium. The pressure drop through the porous medium has a strong non-linear effect due to the dominating influence of Forchheimer term over that of the linear Darcy term at high operating frequencies. The phase angle relationships among the pressure, temperature and the mass flow rate in the porous zones are also important in determining the performance of pulse tuberefrigerator.
Resumo:
Two-band extended Hubbard model studies show that the shift in optical gap of the metal-halogen (MX) chain upon embedding in a crystalline environment depends upon alternation in the site-diagonal electron-lattice interaction parameter (epsilon(M)) and the strength of electron-electron interactions at the metal site (U(M)). The equilibrium geometry studies on isolated chains show that the MX chains tend to distort for alternating epsilon(M) and small U(M) values.
Resumo:
We derive exact expressions for the zeroth and the first three spectral moment sum rules for the retarded Green's function and for the zeroth and the first spectral moment sum rules for the retarded self-energy of the inhomogeneous Bose-Hubbard model in nonequilibrium, when the local on-site repulsion and the chemical potential are time-dependent, and in the presence of an external time-dependent electromagnetic field. We also evaluate these expressions for the homogeneous case in equilibrium, where all time dependence and external fields vanish. Unlike similar sum rules for the Fermi-Hubbard model, in the Bose-Hubbard model case, the sum rules often depend on expectation values that cannot be determined simply from parameters in the Hamiltonian like the interaction strength and chemical potential but require knowledge of equal-time many-body expectation values from some other source. We show how one can approximately evaluate these expectation values for the Mott-insulating phase in a systematic strong-coupling expansion in powers of the hopping divided by the interaction. We compare the exact moment relations to the calculated moments of spectral functions determined from a variety of different numerical approximations and use them to benchmark their accuracy. DOI: 10.1103/PhysRevA.87.013628
Resumo:
Experimental investigations on the ignition and combustion stabilization of kerosene with pilot hydrogen in Mach 2.5 airflows were conducted using two test combustors, with cross sections of 30.5 x 30 and 51 x 70 mm, respectively. Various integrated modules, including the combinations of different pilot injection schemes and recessed cavity flameholders with different geometries, were designed and tested. The stagnation pressure of vitiated air varied within the range of 1.1-1.8 NiPa, while the stagnation temperature varied from 1500 to 1900 K. Specifically, effects of the pilot hydrogen injection scheme, cavity geometry, and combustor scaling on the minimally required pilot hydrogen equivalence ratio were systematically examined. Results indicated that the cavity depth and length had significant effects on the ignition and flameholding, whereas the slanted angle of the aft wall was relatively less important. Two cavities in tandem were shown to be a more effective flameholding mechanism than that with a single cavity. The minimally required pilot hydrogen equivalence ratio for kerosene ignition and stable combustion was found to be as low as 0.02. Furthermore, combustion efficiency of 80% was demonstrated to be achievable for kerosene with the simultaneous use of pilot hydrogen and a recessed cavity to promote the ignition and global burning.