942 resultados para equilibrium asset pricing models with latent variables
Resumo:
The aim of this study was to develop a model capable to capture the different contributions which characterize the nonlinear behaviour of reinforced concrete structures. In particular, especially for non slender structures, the contribution to the nonlinear deformation due to bending may be not sufficient to determine the structural response. Two different models characterized by a fibre beam-column element are here proposed. These models can reproduce the flexure-shear interaction in the nonlinear range, with the purpose to improve the analysis in shear-critical structures. The first element discussed is based on flexibility formulation which is associated with the Modified Compression Field Theory as material constitutive law. The other model described in this thesis is based on a three-field variational formulation which is associated with a 3D generalized plastic-damage model as constitutive relationship. The first model proposed in this thesis was developed trying to combine a fibre beamcolumn element based on the flexibility formulation with the MCFT theory as constitutive relationship. The flexibility formulation, in fact, seems to be particularly effective for analysis in the nonlinear field. Just the coupling between the fibre element to model the structure and the shear panel to model the individual fibres allows to describe the nonlinear response associated to flexure and shear, and especially their interaction in the nonlinear field. The model was implemented in an original matlab® computer code, for describing the response of generic structures. The simulations carried out allowed to verify the field of working of the model. Comparisons with available experimental results related to reinforced concrete shears wall were performed in order to validate the model. These results are characterized by the peculiarity of distinguishing the different contributions due to flexure and shear separately. The presented simulations were carried out, in particular, for monotonic loading. The model was tested also through numerical comparisons with other computer programs. Finally it was applied for performing a numerical study on the influence of the nonlinear shear response for non slender reinforced concrete (RC) members. Another approach to the problem has been studied during a period of research at the University of California Berkeley. The beam formulation follows the assumptions of the Timoshenko shear beam theory for the displacement field, and uses a three-field variational formulation in the derivation of the element response. A generalized plasticity model is implemented for structural steel and a 3D plastic-damage model is used for the simulation of concrete. The transverse normal stress is used to satisfy the transverse equilibrium equations of at each control section, this criterion is also used for the condensation of degrees of freedom from the 3D constitutive material to a beam element. In this thesis is presented the beam formulation and the constitutive relationships, different analysis and comparisons are still carrying out between the two model presented.
Resumo:
The maintenance of genetic variation in a spatially heterogeneous environment has been one of the main research themes in theoretical population genetics. Despite considerable progress in understanding the consequences of spatially structured environments on genetic variation, many problems remain unsolved. One of them concerns the relationship between the number of demes, the degree of dominance, and the maximum number of alleles that can be maintained by selection in a subdivided population. In this work, we study the potential of maintaining genetic variation in a two-deme model with deme-independent degree of intermediate dominance, which includes absence of G x E interaction as a special case. We present a thorough numerical analysis of a two-deme three-allele model, which allows us to identify dominance and selection patterns that harbor the potential for stable triallelic equilibria. The information gained by this approach is then used to construct an example in which existence and asymptotic stability of a fully polymorphic equilibrium can be proved analytically. Noteworthy, in this example the parameter range in which three alleles can coexist is maximized for intermediate migration rates. Our results can be interpreted in a specialist-generalist context and (among others) show when two specialists can coexist with a generalist in two demes if the degree of dominance is deme independent and intermediate. The dominance relation between the generalist allele and the specialist alleles play a decisive role. We also discuss linear selection on a quantitative trait and show that G x E interaction is not necessary for the maintenance of more than two alleles in two demes.
Resumo:
In applied work economists often seek to relate a given response variable y to some causal parameter mu* associated with it. This parameter usually represents a summarization based on some explanatory variables of the distribution of y, such as a regression function, and treating it as a conditional expectation is central to its identification and estimation. However, the interpretation of mu* as a conditional expectation breaks down if some or all of the explanatory variables are endogenous. This is not a problem when mu* is modelled as a parametric function of explanatory variables because it is well known how instrumental variables techniques can be used to identify and estimate mu*. In contrast, handling endogenous regressors in nonparametric models, where mu* is regarded as fully unknown, presents di±cult theoretical and practical challenges. In this paper we consider an endogenous nonparametric model based on a conditional moment restriction. We investigate identification related properties of this model when the unknown function mu* belongs to a linear space. We also investigate underidentification of mu* along with the identification of its linear functionals. Several examples are provided in order to develop intuition about identification and estimation for endogenous nonparametric regression and related models.
Resumo:
Based on an order-theoretic approach, we derive sufficient conditions for the existence, characterization, and computation of Markovian equilibrium decision processes and stationary Markov equilibrium on minimal state spaces for a large class of stochastic overlapping generations models. In contrast to all previous work, we consider reduced-form stochastic production technologies that allow for a broad set of equilibrium distortions such as public policy distortions, social security, monetary equilibrium, and production nonconvexities. Our order-based methods are constructive, and we provide monotone iterative algorithms for computing extremal stationary Markov equilibrium decision processes and equilibrium invariant distributions, while avoiding many of the problems associated with the existence of indeterminacies that have been well-documented in previous work. We provide important results for existence of Markov equilibria for the case where capital income is not increasing in the aggregate stock. Finally, we conclude with examples common in macroeconomics such as models with fiat money and social security. We also show how some of our results extend to settings with unbounded state spaces.
Resumo:
Consider a nonparametric regression model Y=mu*(X) + e, where the explanatory variables X are endogenous and e satisfies the conditional moment restriction E[e|W]=0 w.p.1 for instrumental variables W. It is well known that in these models the structural parameter mu* is 'ill-posed' in the sense that the function mapping the data to mu* is not continuous. In this paper, we derive the efficiency bounds for estimating linear functionals E[p(X)mu*(X)] and int_{supp(X)}p(x)mu*(x)dx, where p is a known weight function and supp(X) the support of X, without assuming mu* to be well-posed or even identified.
Resumo:
We present a model of Bayesian network for continuous variables, where densities and conditional densities are estimated with B-spline MoPs. We use a novel approach to directly obtain conditional densities estimation using B-spline properties. In particular we implement naive Bayes and wrapper variables selection. Finally we apply our techniques to the problem of predicting neurons morphological variables from electrophysiological ones.
Resumo:
Services in smart environments pursue to increase the quality of people?s lives. The most important issues when developing this kind of environments is testing and validating such services. These tasks usually imply high costs and annoying or unfeasible real-world testing. In such cases, artificial societies may be used to simulate the smart environment (i.e. physical environment, equipment and humans). With this aim, the CHROMUBE methodology guides test engineers when modeling human beings. Such models reproduce behaviors which are highly similar to the real ones. Originally, these models are based on automata whose transitions are governed by random variables. Automaton?s structure and the probability distribution functions of each random variable are determined by a manual test and error process. In this paper, it is presented an alternative extension of this methodology which avoids the said manual process. It is based on learning human behavior patterns automatically from sensor data by using machine learning techniques. The presented approach has been tested on a real scenario, where this extension has given highly accurate human behavior models,
Resumo:
We evaluate the use of Generalized Empirical Likelihood (GEL) estimators in portfolios efficiency tests for asset pricing models in the presence of conditional information. Estimators from GEL family presents some optimal statistical properties, such as robustness to misspecification and better properties in finite samples. Unlike GMM, the bias for GEL estimators do not increase as more moment conditions are included, which is expected in conditional efficiency analysis. We found some evidences that estimators from GEL class really performs differently in small samples, where efficiency tests using GEL generate lower estimates compared to tests using the standard approach with GMM. With Monte Carlo experiments we see that GEL has better performance when distortions are present in data, especially under heavy tails and Gaussian shocks.
Resumo:
Cover title.
Resumo:
This preliminary report describes work carried out as part of work package 1.2 of the MUCM research project. The report is split in two parts: the ?rst part (Sections 1 and 2) summarises the state of the art in emulation of computer models, while the second presents some initial work on the emulation of dynamic models. In the ?rst part, we describe the basics of emulation, introduce the notation and put together the key results for the emulation of models with single and multiple outputs, with or without the use of mean function. In the second part, we present preliminary results on the chaotic Lorenz 63 model. We look at emulation of a single time step, and repeated application of the emulator for sequential predic- tion. After some design considerations, the emulator is compared with the exact simulator on a number of runs to assess its performance. Several general issues related to emulating dynamic models are raised and discussed. Current work on the larger Lorenz 96 model (40 variables) is presented in the context of dimension reduction, with results to be provided in a follow-up report. The notation used in this report are summarised in appendix.
Resumo:
This empirical study employs a different methodology to examine the change in wealth associated with mergers and acquisitions (M&As) for US firms. Specifically, we employ the standard CAPM, the Fama-French three-factor model and the Carhart four-factor models within the OLS and GJR-GARCH estimation methods to test the behaviour of the cumulative abnormal returns (CARs). Whilst the standard CAPM captures the variability of stock returns with the overall market, the Fama-French factors capture the risk factors that are important to investors. Additionally, augmenting the Fama-French three-factor model with the Carhart momentum factor to generate the four-factor captures additional pricing elements that may affect stock returns. Traditionally, estimates of abnormal returns (ARs) in M&As situations rely on the standard OLS estimation method. However, the standard OLS will provide inefficient estimates of the ARs if the data contain ARCH and asymmetric effects. To minimise this problem of estimation efficiency we re-estimated the ARs using GJR-GARCH estimation method. We find that there is variation in the results both as regards the choice models and estimation methods. Besides these variations in the estimated models and the choice of estimation methods, we also tested whether the ARs are affected by the degree of liquidity of the stocks and the size of the firm. We document significant positive post-announcement cumulative ARs (CARs) for target firm shareholders under both the OLS and GJR-GARCH methods across all three methodologies. However, post-event CARs for acquiring firm shareholders were insignificant for both sets of estimation methods under the three methodologies. The GJR-GARCH method seems to generate larger CARs than those of the OLS method. Using both market capitalization and trading volume as a measure of liquidity and the size of the firm, we observed strong return continuations in the medium firms relative to small and large firms for target shareholders. We consistently observed market efficiency in small and large firm. This implies that target firms for small and large firms overreact to new information resulting in a more efficient market. For acquirer firms, our measure of liquidity captures strong return continuations for small firms under the OLS estimates for both CAPM and Fama-French three-factor models, whilst under the GJR-GARCH estimates only for Carhart model. Post-announcement bootstrapping simulated CARs confirmed our earlier results.
Resumo:
2000 Mathematics Subject Classification: primary: 60J80, 60J85, secondary: 62M09, 92D40
Resumo:
A pénzügyi eszközök árazásának alaptétele - kissé pongyolán megfogalmazva - azt állítja, hogy egy értékpapírpiacon akkor nincs arbitrázs, ha létezik egy az eredetivel ekvivalens valószínűségi mérték, amelyre vonatkozóan az értékpapírok árait leíró folyamat egy bizonyos értelemben "martingál". Az első ilyen jellegű állítást M. Harrison és S. R. Pliska bizonyították arra esetre, amikor a valószínűségi mező végesen generált. Azóta a tételnek számos általánosítása született. Ezek közül az egyik legismertebb a Dalang{Morton{ Willinger-tétel, ami már teljesen általános valószínűségi mezőből indul ki, de felteszi, hogy az időparaméter diszkrét, és az időhorizont véges. Időközben a tételnek számos folytonos időparaméterű folyamatokra vonatkozó változata is született. Az alaptételt általános esetben, vagyis amikor valószínűségi mező teljesen általános, és az értékpapírok piaci árait leíró folyamat lokálisan korlátos szemimartingál, Delbaen és W. Schachermayer bizonyították be. A Delbaen{Schachermayer-féle alaptétel a maga nemében egy igen általános áll ítás. A tétel bizonyítása igen hosszadalmas, és a funkcionálanalízis valamint a sztochasztikus folyamatok általános elméletének mély eredményeit használja. Utóbbi tudományterület nagy részét P. A. Meyer és a francia strassbourgi iskola matematikusai dolgozták ki a 60-as évek végétől kezdve. A terület megértését tehát alaposan megnehezíti, hogy a felhasznált matematikai apparátus viszonylag friss, egy része pedig csak francia nyelven érhető el. Meggyőződésünk szerint az eredeti, 1994-es Delbaen és Schachermayer-féle bizonyítás csak kevesek által hozzáférhető. A tételnek tudomásunk szerint azóta sem született tankönyvi feldolgozása, annak ellenére, hogy maga az állítás közgazdász körökben is széles körben ismerté vált, és az eredeti cikket számos szerző idézi. Az itt bemutatott bizonyítás Delbaen és Schachermayer 1992 és 2006 közötti írásain alapul. ______ The Delbaen and Schachermayer's theorem is one of the deepest results of mathematical finance. In this article we tried to rethink and slightly simplify the original proof of the theorem to make understandable for nonspecialists who are familiar with general theory of stochastic processes. We give a detailed proof of the theorem and we give new proofs for some of the used statements.
Resumo:
A plethora of recent literature on asset pricing provides plenty of empirical evidence on the importance of liquidity, governance and adverse selection of equity on pricing of assets together with more traditional factors such as market beta and the Fama-French factors. However, literature has usually stressed that these factors are priced individually. In this dissertation we argue that these factors may be related to each other, hence not only individual but also joint tests of their significance is called for. ^ In the three related essays, we examine the liquidity premium in the context of the finer three-digit SIC industry classification, joint importance of liquidity and governance factors as well as governance and adverse selection. Recent studies by Core, Guay and Rusticus (2006) and Ben-Rephael, Kadan and Wohl (2010) find that governance and liquidity premiums are dwindling in the last few years. One reason could be that liquidity is very unevenly distributed across industries. This could affect the interpretation of prior liquidity studies. Thus, in the first chapter we analyze the relation of industry clustering and liquidity risk following a finer industry classification suggested by Johnson, Moorman and Sorescu (2009). In the second chapter, we examine the dwindling influence of the governance factor if taken simultaneously with liquidity. We argue that this happens since governance characteristics are potentially a proxy for information asymmetry that may be better captured by market liquidity of a company's shares. Hence, we jointly examine both the factors, namely, governance and liquidity - in a series of standard asset pricing tests. Our results reconfirm the importance of governance and liquidity in explaining stock returns thus independently corroborating the findings of Amihud (2002) and Gompers, Ishii and Metrick (2003). Moreover, governance is not subsumed by liquidity. Lastly, we analyze the relation of governance and adverse selection, and again corroborate previous findings of a priced governance factor. Furthermore, we ascertain the importance of microstructure measures in asset pricing by employing Huang and Stoll's (1997) method to extract an adverse selection variable and finding evidence for its explanatory power in four-factor regressions.^