1000 resultados para equazione di Smolukowski equazioni differenziali morbo di Alzheimer
Resumo:
Nella tesi verranno presi in considerazione tre aspetti: si descriverà come la teoria dei nodi si sia sviluppata nel corso degli anni in relazione alle diverse scoperte scientifiche avvenute. Si potrà quindi subito avere una idea di come questa teoria sia estremamente connessa a diverse altre. Nel secondo capitolo ci si occuperà degli aspetti più formali di questa teoria. Si introdurrà il concetto di nodi equivalenti e di invariante dei nodi. Si definiranno diversi invarianti, dai più elementari, le mosse di Reidemeister, il numero di incroci e la tricolorabilità, fino ai polinomi invarianti, tra cui il polinomio di Alexander, il polinomio di Jones e quello di Kaufman. Infine si spiegheranno alcune applicazioni della teoria dei nodi in chimica, fisica e biologia. Sulla chimica, si definirà la chiralità molecolare e si mostrerà come la chiralità dei nodi possa essere utile nel determinare quella molecolare. In campo fisico, si mostrerà la relazione che esiste tra l'equazione di Yang-Baxter e i nodi. E in conclusione si mostrerà come modellare un importante processo biologico, la recombinazione del DNA, grazie alla teoria dei nodi.
Resumo:
Nella tesi vengono presentate alcune relazioni fra gruppi quantici e modelli reticolari. In particolare si associa un modello vertex a una rappresentazione di un'algebra inviluppante quantizzata affine e si mostra che, specializzando il parametro quantistico ad una radice dell'unità, si manifestano speciali simmetrie.
Resumo:
Si è proposto una serie di 4 assiomi per la MQ più deboli, e quindi più fondamentali, da cui è possibile dedurre i concetti di misura di probabilità, equazione di Schrodinger e operatori autoaggiunti, considerati i pilastri della MQ. Si è cercato di trovare le motivazioni fisiche che rendevano necessaria la loro formulazione e si sono sviluppate le conseguenze matematiche. In particolare ci si è focalizzati nel dimostrare che non a tutte le osservabili possono essere associati operatori simmetrici definiti su tutto lo spazio di Hilbert, da cui l’introduzione negli assiomi della MQ degli operatori simmetrici massimali densamente definiti; il punto fondamentale è che da questi ultimi è stato provato che si può arrivare alla corrispondenza biunivoca tra operatori autoaggiunti ed osservabili fisiche. Si è infine dimostrato che la condizione che un operatore sia simmetrico massimale non implica che esso sia autoaggiunto.
Resumo:
L'equazione di Klein-Gordon descrive una ampia varietà di fenomeni fisici come la propagazione delle onde in Meccanica dei Continui ed il comportamento delle particelle spinless in Meccanica Quantistica Relativistica. Recentemente, la forma dissipativa di questa equazione si è rivelata essere una legge di evoluzione fondamentale in alcuni modelli cosmologici, in particolare nell'ambito dei cosiddetti modelli di k-inflazione in presenza di campi tachionici. L'obiettivo di questo lavoro consiste nell'analizzare gli effetti del parametro dissipativo sulla dispersione nelle soluzioni dell'equazione d'onda. Saranno inoltre studiati alcuni tipici problemi al contorno di particolare interesse cosmologico per mezzo di grafici corrispondenti alle soluzioni fondamentali (Funzioni di Green).
Resumo:
I tetti verdi rappresentano, sempre più frequentemente, una tecnologia idonea alla mitigazione alle problematiche connesse all’ urbanizzazione, tuttavia la conoscenza delle prestazioni dei GR estensivi in clima sub-Mediterraneo è ancora limitata. La presente ricerca è supportata da 15 mesi di analisi sperimentali su due GR situati presso la Scuola di Ingegneria di Bologna. Inizialmente vengono comparate, tra loro e rispetto a una superficie di riferimento (RR), le prestazioni idrologiche ed energetiche dei due GR, caratterizzati da vegetazione a Sedum (SR) e a erbe native perenni (NR). Entrambi riducono i volumi defluiti e le temperature superficiali. Il NR si dimostra migliore del SR sia in campo idrologico che termico, la fisiologia della vegetazione del NR determina l'apertura diurna degli stomi e conseguentemente una maggiore evapotraspirazione (ET). Successivamente si sono studiate la variazioni giornaliere di umidità nel substrato del SR riscontrando che la loro ampiezza è influenzata dalla temperatura, dall’umidità iniziale e dalla fase vegetativa. Queste sono state simulate mediante un modello idrologico basato sull'equazione di bilancio idrico e su due modelli convenzionali per la stima della ET potenziale combinati con una funzione di estrazione dell’ umidità dal suolo. Sono stati proposti dei coefficienti di correzione, ottenuti per calibrazione, per considerare le differenze tra la coltura di riferimento e le colture nei GR durante le fasi di crescita. Infine, con l’ausilio di un modello implementato in SWMM 5.1. 007 utilizzando il modulo Low Impact Development (LID) durante simulazioni in continuo (12 mesi) si sono valutate le prestazioni in termini di ritenzione dei plot SR e RR. Il modello, calibrato e validato, mostra di essere in grado di riprodurre in modo soddisfacente i volumi defluiti dai due plot. Il modello, a seguito di una dettagliata calibrazione, potrebbe supportare Ingegneri e Amministrazioni nella valutazioni dei vantaggi derivanti dall'utilizzo dei GR.
Resumo:
Scopo di questa tesi é di evidenziare le connessioni tra le categorie monoidali, l'equazione di Yang-Baxter e l’integrabilità di alcuni modelli. Oggetto prinacipale del nostro lavoro é stato il monoide di Frobenius e come sia connesso alle C∗-algebre. In questo contesto la totalità delle dimostrazioni sfruttano la strumentazione dell'algebra diagrammatica. Nel corso del lavoro di tesi sono state riprodotte tali dimostrazioni tramite il più familiare linguaggio dell’algebra multilineare allo scopo di rendere più fruibili questi risultati ad un raggio più ampio di potenziali lettori.
Resumo:
Lo scopo di questa tesi è studiare l'espansione dinamica di due fermioni interagenti in una catena unidimensionale cercando di definire il ruolo degli stati legati durante l'evoluzione temporale del sistema. Lo studio di questo modello viene effettuato a livello analitico tramite la tecnica del Bethe ansatz, che ci fornisce autovalori ed autovettori dell'hamiltoniana, e se ne valutano le proprietà statiche. Particolare attenzione è stata dedicata alle caratteristiche dello spettro al variare dell'interazione tra le due particelle e alle caratteristiche degli autostati. Dalla risoluzione dell'equazione di Bethe vengono ricercate le soluzioni che danno luogo a stati legati delle due particelle e se ne valuta lo spettro energetico in funzione del momento del centro di massa. Si è studiato inoltre l'andamento del numero delle soluzioni, in particolare delle soluzioni che danno luogo ad uno stato legato, al variare della lunghezza della catena e del parametro di interazione. La valutazione delle proprietà dinamiche del modello è stata effettuata tramite l'utilizzo dell'algoritmo t-DMRG (time dependent - Density Matrix Renormalization Group). Questo metodo numerico, che si basa sulla decimazione dello spazio di Hilbert, ci permette di avere accesso a quantità che caratterizzano la dinamica quali la densità e la velocità di espansione. Da queste sono stati estratti i proli dinamici della densità e della velocità di espansione al variare del valore del parametro di interazione.
Resumo:
Il seguente lavoro di tesi ripercorre la teoria classica della fluidodinamica, dalle leggi di conservazione alla derivazione dell'equazione di Navier-Stokes. Introdotto il numero di Reynolds R e delineate le caratteristiche dei flussi laminari e turbolenti viene posta maggiore attenzione su questi ultimi, derivando le RANS ed esponendo le principali teorie fisiche della turbolenza. Vengono quindi trattate le perturbazioni acustiche, nella loro forma lineare tipica delle radiazioni generate da corpi vibranti e nella forma non-lineare tipica delle radiazioni generate da flussi. Il suono aerodinamico, generato da flussi, è affrontato mediante la teoria di Lighthill, che formula un'analogia tra flussi e mezzi acustici a riposo.
Resumo:
In questa trattazione si studia la regolarità delle soluzioni viscose plurisubarmoniche dell’equazione di Monge-Ampère complessa. Si tratta di un’equazione alle derivate parziali del secondo ordine completamente non lineare il cui termine del secondo ordine è il determinante della matrice hessiana complessa di una funzione incognita a valori reali u. Il principale risultato della tesi è un nuovo controesempio di tipo Pogorelov per questa equazione. Si prova cioè l’esistenza di soluzioni viscose plurisubarmoniche e non classiche per un equazione di Monge-Ampère complessa.
Resumo:
Tra tutti i fenomeni naturali osservabili, ne era presente uno particolarmente interessante e con il quale si aveva diretto contatto quotidianamente: la gravità. Dopo le innumerevoli osservazioni astronomiche effettuate da Galileo, fu Newton nel diciassettesimo secolo a capire che il moto dei pianeti era governato dalle medesime leggi che descrivono la caduta dei gravi sulla Terra e fu quindi lui che ci fornì una prima teoria della gravità con la quale si spiegarono le orbite dei pianeti con ottima precisione. Grazie al contributo di Einstein, la teoria si rinnovò e si arricchì, ma rimase pur sempre lontana dall' essere completa, tant' è che ancora oggi sono presenti molte domande a cui non siamo in grado di rispondere. In questo articolo ci occuperemo di tali quesiti, provando a formulare una teoria che sia in accordo con le attuali evidenze sperimentali. Nella prima parte, tratteremo le ragioni che hanno spinto i ricercatori ad introdurre le nuove teorie della gravità f(R); in particolare vedremo la peculiarità delle curve di rotazione delle galassie e perché ci sia il bisogno di tirare in ballo la materia oscura. Discuteremo anche alcuni problemi derivanti dall' evoluzione cosmica e altre incongruenze riguardanti la stabilità delle stelle di neutroni. In seguito mostreremo come ricavare l' equazione di Einstein partendo dai principi variazionali di Hamilton, e estenderemo tale ragionamento con lo scopo di ottenere un' equazione corrispondente ad una gravità modificata. Infine, verranno introdotte le teorie della gravità f(R), per mezzo delle quali cercheremo di discutere alcune possibili spiegazioni alle problematiche mosse nella parte introduttiva.
Resumo:
Nel presente lavoro è affrontato lo studio delle curve ellittiche viste come curve algebriche piane, più precisamente come cubiche lisce nel piano proiettivo complesso. Dopo aver introdotto nella prima parte le nozioni di Superfici compatte e orientabili e curve algebriche, tramite il teorema di classificazione delle Superfici compatte, se ne fornisce una preliminare classificazione basata sul genere della superficie e della curva, rispettivamente. Da qui, segue la definizione di curve ellittiche e uno studio più dettagliato delle loro pricipali proprietà, quali la possibilità di definirle tramite un'equazione affine nota come equazione di Weierstrass e la loro struttura intrinseca di gruppo abeliano. Si fornisce quindi un'ulteriore classificazione delle cubiche lisce, totalmente differente da quella precedente, che si basa invece sul modulo della cubica, invariante per trasformazioni proiettive. Infine, si considera un aspetto computazionale delle curve ellittiche, ovvero la loro applicazione nel campo della Crittografia. Grazie alla struttura che esse assumono sui campi finiti, sotto opportune ipotesi, i crittosistemi a chiave pubblica basati sul problema del logaritmo discreto definiti sulle curve ellittiche, a parità di sicurezza rispetto ai crittosistemi classici, permettono l'utilizzo di chiavi più corte, e quindi meno costose computazionalmente. Si forniscono quindi le definizioni di problema del logaritmo discreto classico e sulle curve ellittiche, ed alcuni esempi di algoritmi crittografici classici definiti su quest'ultime.
Resumo:
degli elementi vegetali nella dinamica e nella dispersione degli inquinanti nello street canyon urbano. In particolare, è stato analizzata la risposta fluidodinamica di cespugli con altezze diverse e di alberi con porosità e altezza del tronco varianti. Il modello analizzato consiste in due edifici di altezza e larghezza pari ad H e lunghezza di 10H, tra i quali corre una strada in cui sono stati modellizati una sorgente rappresentativa del traffico veicolare e, ai lati, due linee di componenti vegetali. Le simulazioni sono state fatte con ANSYS Fluent, un software di "Computational Fluid Dynamics"(CFD) che ha permesso di modellizare la dinamica dei flussi e di simulare le concentrazioni emesse dalla sorgente di CO posta lungo la strada. Per la simulazione è stato impiegato un modello RANS a chiusura k-epsilon, che permette di parametrizzare i momenti secondi nell'equazione di Navier Stokes per permettere una loro più facile risoluzione. I risultati sono stati espressi in termini di profili di velocità e concentrazione molare di CO, unitamente al calcolo della exchange velocity per quantificare gli scambi tra lo street canyon e l'esterno. Per quanto riguarda l'influenza dell'altezza dei tronchi è stata riscontrata una tendenza non lineare tra di essi e la exchange velocity. Analizzando invece la altezza dei cespugli è stato visto che all'aumentare della loro altezza esiste una relazione univoca con l'abbassamento della exchange velocity. Infine, andando a variare la permeabilità delle chiome degli alberi è stata trovatta una variazione non monotonica che correla la exchange velocity con il parametro C_2, che è stata interpretata attraverso i diversi andamenti dei profili sopravento e sottovento. In conclusione, allo stadio attuale della ricerca presentata in questa tesi, non è ancora possibile correlare direttamente la exchange velocity con alcun parametro analizzato.
Resumo:
In questa tesi si affronta analiticamente il problema della stabilità di modelli a più specie interagenti, in campo epidemiologico, per la diffusione ed il controllo di infezioni da virus. Vengono considerati non solo modelli governati da Sistemi Dinamici, ma anche modelli parabolici del tipo Diffusione e Reazione. Partendo dal modello pioneristico SIR di Kermak-McKendrick si affrontano in modo approfondito tutti gli aspetti matematici che permettono di prevenire e controllare la formazione e la gravità di una possibile epidemia. Il modello viene poi articolato con l'aggiunta di considerazioni sulla variazione demografica della popolazione, indicato per questo motivo con il termine endemico. Si generalizza poi questo modello a due possibili applicazioni, includendo nella prima gli effetti della vaccinazione, ottenendo così il nuovo sistema dinamico SIRV. La seconda rappresenta invece uno studio avvenuto agli inizi dell'epidemia da COVID-19, quando i vaccini non erano ancora disponibili. Successivamente viene presentato il recente studio di Bellomo, estensione del modello prototipo per la diffusione di virus, un sistema di tipo Diffusione-Reazione con equazione di tipo diffusione-drift, in cui vengono connessi due aspetti importanti: la propagazione di virus e la chemotassi, in forte analogia con il modello SIR e derivante dalla logica del modello pioneristico di Keller-Segel. Infine, a completamento dello studio analitico, vengono proposti alcuni strumenti dell'analisi numerica, utilizzando l'ambiente MATLAB sul classico modello SIR e su altri due modelli che lo generalizzano per tener conto in un primo tempo della diffusione spaziale della coppia SI e poi solo di S, ma con effetto drift, guidato da I.