993 resultados para equatorial rainfall pattern


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The apposition compound eyes of gonodactyloid stomatopods are divided into a ventral and a dorsal hemisphere by six equatorial rows of enlarged ommatidia, the mid-band (MB). Whereas the hemispheres are specialized for spatial vision, the MB consists of four dorsal rows of ommatidia specialized for colour vision and two ventral rows specialized for polarization vision. The eight retinula cell axons (RCAs) from each ommatidium project retinotopically onto one corresponding lamina cartridge, so that the three retinal data streams (spatial, colour and polarization) remain anatomically separated. This study investigates whether the retinal specializations are reflected in differences in the RCA arrangement within the corresponding lamina cartridges. We have found that, in all three eye regions, the seven short visual fibres (svfs) formed by retinula cells 1-7 (R1-R7) terminate at two distinct lamina levels, geometrically separating the terminals of photoreceptors sensitive to either orthogonal e-vector directions or different wavelengths of light. This arrangement is required for the establishment of spectral and polarization opponency mechanisms. The long visual fibres (lvfs) of the eighth retinula cells (R8) pass through the lamina and project retinotopically to the distal medulla externa. Differences between the three eye regions exist in the packing of svf terminals and in the branching patterns of the lvfs within the lamina. We hypothesize that the R8 cells of MB rows 1-4 are incorporated into the colour vision system formed by R1-R7, whereas the R8 cells of MB rows 5 and 6 form a separate neural channel from R1 to R7 for polarization processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El Niño and the Southern Oscillation (ENSO) is a cycle that is initiated in the equatorial Pacific Ocean and is recognized on interannual timescales by oscillating patterns in tropical Pacific sea surface temperatures (SST) and atmospheric circulations. Using correlation and regression analysis of datasets that include SST’s and other interdependent variables including precipitation, surface winds, sea level pressure, this research seeks to quantify recent changes in ENSO behavior. Specifically, the amplitude, frequency of occurrence, and spatial characteristics (i.e. events with maximum amplitude in the Central Pacific versus the Eastern Pacific) are investigated. The research is based on the question; “Are the statistics of ENSO changing due to increasing greenhouse gas concentrations?” Our hypothesis is that the present-day changes in amplitude, frequency, and spatial characteristics of ENSO are determined by the natural variability of the ocean-atmosphere climate system, not the observed changes in the radiative forcing due to change in the concentrations of greenhouse gases. Statistical analysis, including correlation and regression analysis, is performed on observational ocean and atmospheric datasets available from the National Oceanographic and Atmospheric Administration (NOAA), National Center for Atmospheric Research (NCAR) and coupled model simulations from the Coupled Model Inter-comparison Project (phase 5, CMIP5). Datasets are analyzed with a particular focus on ENSO over the last thirty years. Understanding the observed changes in the ENSO phenomenon over recent decades has a worldwide significance. ENSO is the largest climate signal on timescales of 2 - 7 years and affects billions of people via atmospheric teleconnections that originate in the tropical Pacific. These teleconnections explain why changes in ENSO can lead to climate variations in areas including North and South America, Asia, and Australia. For the United States, El Niño events are linked to decreased number of hurricanes in the Atlantic basin, reduction in precipitation in the Pacific Northwest, and increased precipitation throughout the southern United Stated during winter months. Understanding variability in the amplitude, frequency, and spatial characteristics of ENSO is crucial for decision makers who must adapt where regional ecology and agriculture are affected by ENSO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El Niño and the Southern Oscillation (ENSO) is a cycle that is initiated in the equatorial Pacific Ocean and is recognized on interannual timescales by oscillating patterns in tropical Pacific sea surface temperatures (SST) and atmospheric circulations. Using correlation and regression analysis of datasets that include SST’s and other interdependent variables including precipitation, surface winds, sea level pressure, this research seeks to quantify recent changes in ENSO behavior. Specifically, the amplitude, frequency of occurrence, and spatial characteristics (i.e. events with maximum amplitude in the Central Pacific versus the Eastern Pacific) are investigated. The research is based on the question; “Are the statistics of ENSO changing due to increasing greenhouse gas concentrations?” Our hypothesis is that the present-day changes in amplitude, frequency, and spatial characteristics of ENSO are determined by the natural variability of the ocean-atmosphere climate system, not the observed changes in the radiative forcing due to change in the concentrations of greenhouse gases. Statistical analysis, including correlation and regression analysis, is performed on observational ocean and atmospheric datasets available from the National Oceanographic and Atmospheric Administration (NOAA), National Center for Atmospheric Research (NCAR) and coupled model simulations from the Coupled Model Inter-comparison Project (phase 5, CMIP5). Datasets are analyzed with a particular focus on ENSO over the last thirty years. Understanding the observed changes in the ENSO phenomenon over recent decades has a worldwide significance. ENSO is the largest climate signal on timescales of 2 - 7 years and affects billions of people via atmospheric teleconnections that originate in the tropical Pacific. These teleconnections explain why changes in ENSO can lead to climate variations in areas including North and South America, Asia, and Australia. For the United States, El Niño events are linked to decreased number of hurricanes in the Atlantic basin, reduction in precipitation in the Pacific Northwest, and increased precipitation throughout the southern United Stated during winter months. Understanding variability in the amplitude, frequency, and spatial characteristics of ENSO is crucial for decision makers who must adapt where regional ecology and agriculture are affected by ENSO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shipboard whole-core squeezing was used to measure pore water concentration vs depth profiles of [NO3]-, O2 and SiO2 at 12 stations in the equatorial Pacific along a transect from 15°S to 11°N at 135°W. The [NO3]- and SiO2 profiles were combined with fine-scale resistivity and porosity measurements to calculate benthic fluxes. After using O2 profiles, coupled with the [NO3]- profiles, to constrain the C:N of the degrading organic matter, the [NO3]- fluxes were converted to benthic organic carbon degradation rates. The range in benthic organic carbon degradation rates is 7-30 ?mol cm**-2 y**-1, with maximum values at the equator and minimum values at the southern end of the transect. The zonal trend of benthic degradation rates, with its equatorial maximum and with elevated values skewed to the north of the equator, is similar to the pattern of primary production observed in the region. Benthic organic carbon degradation is 1-2% of primary production. The range of benthic biogenic silica dissolution rates is 6.9-20 µmol cm**-2 y**-1, representing 2.5-5% of silicon fixation in the surface ocean of the region. Its zonal pattern is distinctly different from that of organic carbon degradation: the range in the ratio of silica dissolution to carbon degradation along the transect is 0.44-1.7 mol Si mol C**-1, with maximum values occurring between 12°S and 2°S, and with fairly constant values of 0.5-0.7 north of the equator. A box model calculation of the average lifetime of the organic carbon in the upper 1 cm of the sediments, where 80 +/- 11% of benthic organic carbon degradation occurs, indicates that it is short: from 3.1 years at high flux stations to 11 years at low flux stations. The reactive component of the organic matter must have a shorter lifetime than this average value. In contrast, the average lifetime of biogenic silica in the upper centimeter of these sediments is 55 +/- 28 years, and shows no systematic variations with benthic flux.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study of Recent abyssal benthic foraminifera from core-top samples in the eastern equatorial Indian Ocean has identified distinctive faunas whose distribution patterns reflect the major hydrographic features of the region. Above 3800 m, Indian Deep Water (IDW) is characterized by a diverse and evenly-distributed biofacies to which Globocassidulina subglobosa, Pyrgo spp., Uvigerina peregrina, and Eggerella bradyi are the major contributors. Nuttalides umbonifera and Epistominella exigua are associated with Indian Bottom Water (IBW) below 3800 m. Within the IBW fauna, N. umbonifera and E. exigua are characteristic of two biofacies with independent distribution patterns. Nuttalides umbonifera systematically increases in abundance with increasing water depth. The E. exigua biofacies reaches its greatest abundance in sediments on the eastern flank of the Ninetyeast Ridge and in the Wharton-Cocos Basin. The hydrographic transition between IDW and IBW coincides with the level of transition from waters supersaturated to waters undersaturated with respect to calcite and with the depth of the lysocline. Carbonate saturation levels, possibly combined with the effects of selective dissolution on the benthic foraminiferal populations, best explain the change in faunas across the IDW/IBW boundary and the bathymetric distribution pattern of N. umbonifera. The distribution of the E. exigua fauna cannot be explained with this model. Epistominella exigua is associated with the colder, more oxygenated IBW of the Wharton-Cocos Basin. The distribution of this biofacies on the eastern flank of the Ninetyeast Ridge agrees well with the calculated bathymetric position of the northward flowing deep boundary current which aerates the eastern basins of the Indian Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have analyzed the major, trace, and rare earth element composition of surface sediments collected from a transect across the Equator at 135°W longitude in the Pacific Ocean. Comparing the behavior of this suite of elements to the CaCO3, opal, and Corg fluxes (which record sharp maxima at the Equator, previously documented at the same sampling stations) enables us to assess the relative significance of the various pathways by which trace elements are transported to the equatorial Pacific seafloor. The 1. (1) high biogenic source at the Equator, associated with equatorial divergence of surface water and upwelling of nutrient-rich water, and 2. (2) high aluminosilicate flux at 4°N, associated with increased terrigenous input from elevated rainfall at the Intertropical Convergence Zone (ITCZ) of the tradewinds, are the two most important fluxes with which elemental transport is affiliated. The biogenic flux at the Equator transports Ca and Sr structurally bound to carbonate tests and Mn primarily as an adsorbed component. Trace elements such as Cr, As, Pb, and the REEs are also influenced by the biogenic flux at the Equator, although this affiliation is not regionally dominant. Normative calculations suggest that extremely large fluxes of Ba and P at the Equator are carried by only small proportions of barite and apatite phases. The high terrigenous flux at the ITCZ has a profound effect on chemical transport to the seafloor, with elemental fluxes increasing tremendously and in parallel with Ti. Normative calculations, however, indicate that these fluxes are far in excess of what can be supplied by lattice-bound terrigenous phases. The accumulation of Ba is greater than is affiliated with biogenic transport at the Equator, while the P flux at the ITCZ is only 10% less than at the Equator. This challenges the common view that Ba and P are essentially exclusively associated with biogenic fluxes. Many other elements (including Mn, Pb, As, and REEs) also record greater accumulation beneath the ITCZ than at the Equator. Thus, adsorptive scavenging by terrigenous paniculate matter, or phases intimately associated with them, appears to be an extremely important process regulating elemental transport to the equatorial Pacific seafloor. These findings emphasize the role of vertical transport to the sediment, and provide additional constraints on the paleochemical use of trace elements to track biogenic and terrigenous fluxes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In contrast to the wide range of studies carried out in temperate and high-latitude oceanic regions, only a few studies have focused on recent and Holocene organic-walled dinoflagellate cyst assemblages from the tropics. This information is, however, essential for fully understanding the ability of species to adapt to different oceanographic regimes, and ultimately their potential application to local and regional palaeoenvironmental and palaeoceanographic reconstructions. Surface sediment samples of the western equatorial Atlantic Ocean north of Brazil, an area greatly influenced by Amazon River discharge waters, were therefore analysed in detail for their organic-walled dinoflagellate cyst content. A diverse association of 43 taxa was identified, and large differences in cyst distribution were observed. The cyst thanatocoenosis in bottom sediments reflects the seasonal advection of Amazon River discharge water through the Guyana Current and the North Equatorial Countercurrent well into the North Atlantic. To establish potential links between cyst distribution and the environmental conditions of the upper water column, distribution patterns were compared with mean temperature, salinity, density and stratification gradients within the upper water column (0-100 m) over different times of the year, using correspondence analysis and canonical correspondence analysis. The analyses show that differences in these parameters only play a subordinate role in determining species distribution. Instead, nutrient availability, or related factors, dominates the distribution pattern. The only possible indicators of slightly reduced salinities are Trinovantedinium applanatum and Lingulodinium machaerophorum. Four assemblage groups of cyst taxa with similar environmental affinities related to specific water masses/currents can be distinguished and have potential for palaeoenvironmental reconstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abundant hydroclimatic evidence from western Amazonia and the adjacent Andes documents wet conditions during Heinrich Stadial 1 (HS1, 18-15 ka), a cold period in the high latitudes of the North Atlantic. This precipitation anomaly was attributed to a strengthening of the South American summer monsoon due to a change in the Atlantic interhemispheric sea surface temperature (SST) gradient. However, the physical viability of this mechanism has never been rigorously tested. We address this issue by combining a thorough compilation of tropical South American paleorecords and a set of atmosphere model sensitivity experiments. Our results show that the Atlantic SST variations alone, although leading to dry conditions in northern South America and wet conditions in northeastern Brazil, cannot produce increased precipitation over western Amazonia and the adjacent Andes during HS1. Instead, an eastern equatorial Pacific SST increase (i.e., 0.5-1.5 °C), in response to the slowdown of the Atlantic Meridional Overturning Circulation during HS1, is crucial to generate the wet conditions in these regions. The mechanism works via anomalous low sea level pressure over the eastern equatorial Pacific, which promotes a regional easterly low-level wind anomaly and moisture recycling from central Amazonia towards the Andes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need for continuous recording rain gauges makes it difficult to determine the rainfall erosivity factor (R-factor) of the (R)USLE model in areas without good temporal data coverage. In mainland Spain, the Nature Conservation Institute (ICONA) determined the R-factor at few selected pluviographs, so simple estimates of the R-factor are definitely of great interest. The objectives of this study were: (1) to identify a readily available estimate of the R-factor for mainland Spain; (2) to discuss the applicability of a single (global) estimate based on analysis of regional results; (3) to evaluate the effect of record length on estimate precision and accuracy; and (4) to validate an available regression model developed by ICONA. Four estimators based on monthly precipitation were computed at 74 rainfall stations throughout mainland Spain. The regression analysis conducted at a global level clearly showed that modified Fournier index (MFI) ranked first among all assessed indexes. Applicability of this preliminary global model across mainland Spain was evaluated by analyzing regression results obtained at a regional level. It was found that three contiguous regions of eastern Spain (Catalonia, Valencian Community and Murcia) could have a different rainfall erosivity pattern, so a new regression analysis was conducted by dividing mainland Spain into two areas: Eastern Spain and plateau-lowland area. A comparative analysis concluded that the bi-areal regression model based on MFI for a 10-year record length provided a simple, precise and accurate estimate of the R-factor in mainland Spain. Finally, validation of the regression model proposed by ICONA showed that R-ICONA index overpredicted the R-factor by approximately 19%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eleven expeditions were undertaken to the Saint Peter and Saint Paul Archipelago to study the reproductive biology of Grapsus grapsus, providing additional information on limb mutilation and carapace colour. MATURE software was used to estimate morphological maturity, while gonadal analyses were conducted to estimate physiological maturity. The puberty moult took place at larger size in males (51.4 mm of carapace length) than in females (33.8 mm), while physiological maturity occurred at a similar size in males (38.4 mm) and in females (33.4 mm). Above 50 mm, the proportion of red males increased in the population, indicating that functional maturity is also related to colour pattern. Small habitat and high local population density contributed to the high rate of cannibalism. The low diversity of food items, absence of predators of large crabs and high geographic isolation are the determinants of unique behavioural and biological characteristics observed in the G. grapsus population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enterprise Application Integration (EAI) is a challenging area that is attracting growing attention from the software industry and the research community. A landscape of languages and techniques for EAI has emerged and is continuously being enriched with new proposals from different software vendors and coalitions. However, little or no effort has been dedicated to systematically evaluate and compare these languages and techniques. The work reported in this paper is a first step in this direction. It presents an in-depth analysis of a language, namely the Business Modeling Language, specifically developed for EAI. The framework used for this analysis is based on a number of workflow and communication patterns. This framework provides a basis for evaluating the advantages and drawbacks of EAI languages with respect to recurrent problems and situations.